Carnegie
Mellon

Universi
Qatar v

Introduction to
Software Architecture

17-313 Fall 2023

ttttttttttttttttt

Learning Goals

e Understand the abstraction level of architectural reasoning

e Appreciate how software systems can be viewed at different abstraction
levels

e Distinguish software architecture from (object-oriented) software design

e Use notation and views to describe the architecture suitable to the
purpose

e Document architectures clearly, without ambiguity

Views and Abstraction

! Al-Ghuwayriyah
= el

Al Uwaynah
wgdl

mp
Ash Shahaniya

7
Al Wobrah~T Alblsayriyoh
° pAN
Urnn AlMowag’™ >
Alkhayrigah
AquoAlHornd
Uroen Wishah
AlAsharoe 0

/
ar ol Buraid

Samrah

©2018 GEOATLAS® for Worldometer.org

[National Capital (390,000 in 1999)
O over 10,000

© over 5,000

o other main city

- other city

© 2020 PSA, Qatar GIS Net

Legend ik Al ruia

[] 7one Boundary 2020 fkid 2 a
99 Zone Number 2020 &k

e A
State of Qatar

https://www.qnb.co.id/assets/62378773_322 Qatar%20Economic%20Review?202010.pdf

@0 —MPELNE [oe

BLOCK gy WELL
@N'-M‘Eﬂ + Locaron [novus

LandCover 2020

LandCover 2020

2 S3D

Others

Mangroves/ Forests

Shrubs/Rawada
Sand/Sand Dunes

- Settlements/Built-up
- Farms/Agriculture

Abstracted views focus on conveying specific
information

They have a well-defined purpose

Show only necessary information

Abstract away unnecessary details

Use legends/annotations to remove ambiguity
Multiple views of the same object tell a larger story

Software Architecture

Case Study: Autonomous Vehicle Software

Case Study: Apollo

Check out the “side pass” feature from the video:
https://www.youtube.com/watch?v=BXNDUtNZdM4

e Discussinteams of 4 how you would implement the side pass feature

Source: https://github.com/ApolloAuto/apollo

Doxygen: https://hidetoshi-furukawa.github.io/apollo-
doxygen/index.html

https://www.youtube.com/watch?v=BXNDUtNZdM4
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html

Apollo Software Architecture

N\ 4 :

[Prediction [Planning Control : Monitor
J \ |
I

[Guardian]:
HMI
HD Map Localization CANBus

Key:

Data Lines Control lines

ﬁ ﬁ
Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5 Software_Architecture.md

. [ayS3D

Apollo Hardware Architecture

IMU
if the receiver is
Propak 6 (not
needed for
Propak 7)

Car Power Dataspeed 12VDC WIFI 4G Accessories: Monitor, Vehicle
Keyboard, M Ch
Svstem [power panel LTE Router eypoar ouse caASI:IS
Vendor
Ethernet CAN
cable
A 4
) PCls | espcan
Neousys 6108GC | cardacH
uss S with GTX1080
" -~
7 Y) Vendor

—————————————————— USB USB cAN

4 100M Ethernet cable
| NovAtel GPS I_ ———————————————————————— -——
- Receiver o I

3 »>

DBg GPRMC and PPS 1 Velodyne VLS-128 ARGUS FPD-Link Ultrasonic Sensor Continental |
Signals thr ho | LiDar Camera Radar |
gnals throug |
|
|

GPS
Antenna

|
|
1
]
1
|
I customized cables|
|
|
1
|
1

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md

. [ayS3D

Apollo Hardware/Vehicle Overview

128L LiDAR

. ﬁ
SldeCameras I —— Inside of the Trunk

Industrial PC

e

GPS Receiver

\&g-

R

16L LIDAR

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md

. [ayS3D

Apollo Perception Module

Pre-Processing

Cameras—

Image
Pre-processing

Lidars —

Point cloud
Pre-processing

Deep Networks

Post-Processing

Multi-cameras

Radars

Traffic light Temporal Traffic) o Final
Detection | | light recognition | |V U t-traffic lights " Traffic light
Voting
Lane/Flow Lane/Flow Lane ———
Detection Tracking CaI|b||‘at|on |
™ !
Object 2D-to-3D Camera Object |
Detection Conversion Tracking
Final object
Point cloud Object Lidar Object ||| Configurable -, with type,
segmentation Classification Tracking Sensor Fusion distance &
velocity
Radar Radar Object | |
Process Tracking

LayS3D

Apollo ML Models

e

Image
Preprocess

LLLLL

Camera

—

]
Point Clouds
L - Preprocess
(O—0"

LiDAR

bounding
boxes

Traffic_Light_
Detection

Lane_Detection

Horizon_Light
Vertical Light

Quadrate_Light

Traffic_Light
Recognition

Denseline

polynomial curve
and lane type

Traffic Light
Postprocess

traffic light result

light
messege

\—/\

DarkSCNN |

LiDAR_Obstacle_Detection

LiDAR_Velodyne 16

LIDAR_Velodyne_64

LiDAR_Velodyne 128

' | obstacle information
L——» Camera_Obstacle_Detection

obstacle
information

Camera

N Lane Postprocess

N

Traffic Light

final lane result /] messege
' \
' —>

Lane Line

Postprocess

LiDAR

\ﬁ_

Fusion

Postprocess

7

Radar
Detection
Result

Camera
Calibration

Bicycle

Scenarios Manager

Trajectory
Prediction

Vehicle_Cruise_Cutin

Vehicle_Cruise Go

Junction

Cruise

lane

Prediction
Container

precept obstacle
message

T

final object O
result H

Pedestrian

&

oo

Vehicle(truck or car)

Vehicle Junction Map

‘ Vehicle_Junction_MLP

[Vehicle_Lane_Scanning
Vehicle MLP
Vehicle RNN

| Vehicle Lane_Aggregate

Pedestrian [.STM

.)

Source: Zi Peng, Jingiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex
Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE '20), https://doi.org/10.1145/ 3368089.3417063

LayS3D

Apollo Software Stack

Cloud Service Platform

Open Software
Platform

Hardware Development
Platform

Open Vehicle
Certificate Platform

HD Map

Map Engine

Computing
Unit

Simulation Data Platform Security OTA

Localization Perception Planning Control

Apollo Cyber RT Framework

RTOS
GPS/IMU | Camera | LiDAR | Radar | UIMasonic AMI
Sensor Device

Certified Apollo Compatible Drive-by-wire Vehicle

19

Volume Production V2X
Duer0S . I
Service Components Roadside Service
End-to-End HMI
V2X Adapter
Black Apollo Apollo A a
Box Sensor Unit Extension Unit Ver el

Open Vehicle Interface Standard

Major Updates in Apollo 3.5

Source: https://github.com/ApolloAuto/

LayS3D

Feature Evolution (Software Stack View)

C loud Simulation Data Platform Security DuerOS
Service Platform

Map Engine Localization Perception Planning Control

Software Runtime Framework

Open Platform

REICEIN Computing GPS/IMU Camera LiDAR Radar HMI Device Black Box
Reference Platform Unit

Vehicle Drive-by-wire Vehicle
Reference Platform

Released in 1.0 Released in 1.5 Released in 2.0 Updated in 2.5

Software Architecture

The software architecture of a program or computing system
IS the structure or structures of the system, which

compris the externally visible

and

[Bass et al. 2003]

Note: this definition is ambivalent to
whether the architecture is known or

whether it's any good!

21 [ayS3D

Software Design vs. Architecture

Levels of Abstraction

e Requirements
o high-level “what” needs to be done

e Architecture (High-level design)

o high-level “how”, mid-level “what”

e (0OO-Design (Low-level design, e.g. design patterns)
o mid-level “how”, low-level “what”

e (Code

o low-level “how”

Design vs. Architecture

Design Questions

How do | add a menu item in NodeBB?

How can | make it easy to create posts
in NodeBB?

What lock protects this data?
How does Google rank pages?

What enc_oder should | use for secure
communication?

What is the interface between objects?

24

Architectural Questions

How do | extend NodeBB with a plugin?

What threads exist and how do they
coordinate?

How does Google scale to billions of hits
per day?

Where should | put my firewalls?

What is the interface between
subsystems?

Objects

Model

25

Design Patterns

ot L sl A VL, o o o o e e = o e e e = = = = = = =
|

| Factory > View

|

|

|

|

|

| v

; Observer > Model < Controller
: "| /subject |1

|

|

| \4

: Command
|

26

Design Patterns

Controll
Com

Model
/ Subject
A
e
A

A

BN B

27

Design Patterns

Architecture

Architecture

30

Architecture

MR
Li;iz__i____—_—_-_i}_—_-t R

Why Document Architecture?

e Blueprint for the system
o Artifact for early analysis
o Primary carrier of quality attributes
o Key to post-deployment maintenance and enhancement
e Documentation speaks for the architect, today and 20 years from today
o Aslong as the system is built, maintained, and evolved according to its documented
architecture

e Support traceability.

. [ayS3D

Views and Purposes

e Everyview should align with a purpose

e Views should only represent information relevant to that purpose
o Abstract away other details
o Annotate view to guide understanding where needed

e Different views are suitable for different reasoning aspects (different
quality goals), e.g.,

o Performance
Extensibility
Security
Scalability

(O S ORES)

. [ayS3D

Common Views in Documenting Software
Architecture

e Static View

o Modules (subsystems, structures)
and their relations (dependencies, ...)

e Dynamic View
o Components (processes, runnable entities) and connectors (messages, data flow, ...)
e Physical View (Deployment)

o Hardware structures and their connections

. [ayS3D

Common Software Architectures

1. Pipes and Filters

Filters

/\

o=

~ =

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

[ayS3D

Example:
Compilers

wH
uzage (chor ‘name)
1

protrouzage:n
prnttCas ke fie

il

Compiler front-end for language 1

et Language 1 source code

public cinss ongEven |
privmte u

pub Ik Odd Ev:nln{
nput

ulaie 0§

b
pub 1k ki ma St ol
3

}

{-Language 2 source code

e

Compiler front-end for language 2

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Lexical Analyzer (Scanner)

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Non-optimized intermediate code

Intermediate code optimizer

/

Optimized intermediate code

Non-optimized intermediate code

\

Target-1

Code Generator

Target-2
Code Generator

lTarget—l machine code

P ~

\)

| -;l—

lTarget—Z machine code

2. Object-Oriented Organization

Proc call

obj is a manager

op is an invocation

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

[ayS3D

3. Event-Driven Architecture

Consumer 1
subscribed to A

Producer 1 A
A

Consumer 2

w A+B
/ Event broker »| subscribedto A + B
B
B
Producer 2

Consumer 3
Subscribed to B

LayS3D

Example: Node.js

Application
‘[JavaScript l

V8
(JavaScript
Engine)

Node.js Architecture

Node.js Libuv
Bindings (Asynchronous L/O)
(Node API)
Event Worker
Queue Blocking Threads
Operation File System
> - > Network
Process
oS Event
Operation Loop Execute
Callback
< <+— <

LayS3D

4. Blackboard Architecture

Direct access

ks

~
3
(7

Blackboard
(shared
data)

9’Computatlon

GO

Memory

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

[ayS3D

5. Layered Systems

Usually
procedure calls

Useful Systems

Composites of
various elements

Users

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

[ayS3D

Data
UDP | UDP
header| data
IP
header IP data
Frame Frame data Frame
header footer

Example: Internet Protocol Suite

Application

Transport

Internet

Link

Elon Musk &
@elonmusk

Just leaving Twitter HQ code review

4:28 AM - Nov 19, 2022

I Twitter Architecture 2022 ‘

Posta:
36.9K Retweets 16.1K Quote Tweets 464K Likes L
service

service
iPhone — Federated i
> i i Timeline
web Strato Column UEETTNEE Feature Hydration
Rige Scorer 4
RPC

« inject ads, who-to-follow, It , v
content hydration, conversation module Yematan sereee
visibilty - cursoring | pagination 1
Twitter g i tweat dediplication Candidate Sources

g | TLS-API . A
- R - e R e

Candidate
Fetch

Gizmoduck | Social graph || Tweety Pie

-. line " .
Home mixer CrMixer
Read Path > Service Pred Senvi

Next-gen System

Guidelines for selecting a notation

Suitable for purpose
Often visual for compact representation
Usually, boxes and arrows

UML possible (semi-formal), but possibly constraining
o Note the different abstraction level - Subsystems or processes, not classes or objects

Formal notations available

Decompose diagrams hierarchically and in views
Always include a legend

Define precisely what the boxes mean

Define precisely what the lines mean

Do not try to do too much in one diagram
o Each view of architecture should fit on a page

o Use hierarchy
. LayS3D

Learning Goals

e Understand the abstraction level of architectural reasoning

e Appreciate how software systems can be viewed at different abstraction
levels

e Distinguish software architecture from (object-oriented) software design

e Use notation and views to describe the architecture suitable to the
purpose

e Document architectures clearly, without ambiguity

. [ayS3D

Next Up

e Microservices

	Introduction to Software Architecture
	Learning Goals
	Views and Abstraction
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Abstracted views focus on conveying specific information
	Software Architecture
	Case Study: Autonomous Vehicle Software
	Case Study: Apollo
	Apollo Software Architecture
	Apollo Hardware Architecture
	Apollo Hardware/Vehicle Overview
	Apollo Perception Module
	Apollo ML Models
	Apollo Software Stack
	Feature Evolution (Software Stack View)
	Software Architecture
	Software Design vs. Architecture
	Levels of Abstraction
	Design vs. Architecture
	Objects
	Design Patterns
	Design Patterns
	Design Patterns
	Architecture
	Architecture
	Architecture
	Why Document Architecture?
	Views and Purposes
	Common Views in Documenting Software Architecture
	Common Software Architectures
	1. Pipes and Filters
	Example:�Compilers
	2. Object-Oriented Organization
	3. Event-Driven Architecture
	Example: Node.js
	4. Blackboard Architecture
	5. Layered Systems
	Example: Internet Protocol Suite
	Slide Number 45
	Guidelines for selecting a notation
	Learning Goals
	Next Up

