
Introduction to
Software Architecture

17-313 Fall 2023

Learning Goals

● Understand the abstraction level of architectural reasoning
● Appreciate how software systems can be viewed at different abstraction

levels
● Distinguish software architecture from (object-oriented) software design
● Use notation and views to describe the architecture suitable to the

purpose
● Document architectures clearly, without ambiguity

2

Views and Abstraction

4

5

7

8

Abstracted views focus on conveying specific
information
● They have a well-defined purpose
● Show only necessary information
● Abstract away unnecessary details
● Use legends/annotations to remove ambiguity
● Multiple views of the same object tell a larger story

Software Architecture

Case Study: Autonomous Vehicle Software

12

Case Study: Apollo

Check out the “side pass” feature from the video:
https://www.youtube.com/watch?v=BXNDUtNZdM4

● Discuss in teams of 4 how you would implement the side pass feature

Source: https://github.com/ApolloAuto/apollo

Doxygen: https://hidetoshi-furukawa.github.io/apollo-
doxygen/index.html

13

https://www.youtube.com/watch?v=BXNDUtNZdM4
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html

Apollo Software Architecture

14

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md

Apollo Hardware Architecture

15

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md

Apollo Hardware/Vehicle Overview

16

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md

Apollo Perception Module

17

Apollo ML Models

18

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex
Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063

Apollo Software Stack

19

Source: https://github.com/ApolloAuto/

Feature Evolution (Software Stack View)

20

Source: https://github.com/ApolloAuto/apollo

Software Architecture

The software architecture of a program or computing system
is the structure or structures of the system, which
comprise software elements, the externally visible
properties of those elements, and the relationships among
them.

 [Bass et al. 2003]

21

Note: this definition is ambivalent to
whether the architecture is known or

whether it’s any good!

Software Design vs. Architecture

Levels of Abstraction

● Requirements
○ high-level “what” needs to be done

● Architecture (High-level design)
○ high-level “how”, mid-level “what”

● OO-Design (Low-level design, e.g. design patterns)
○ mid-level “how”, low-level “what”

● Code
○ low-level “how”

Design vs. Architecture

Design Questions

● How do I add a menu item in NodeBB?

● How can I make it easy to create posts
in NodeBB?

● What lock protects this data?

● How does Google rank pages?

● What encoder should I use for secure
communication?

● What is the interface between objects?

Architectural Questions

● How do I extend NodeBB with a plugin?

● What threads exist and how do they
coordinate?

● How does Google scale to billions of hits
per day?

● Where should I put my firewalls?

● What is the interface between
subsystems?

24

Objects

25

Model

Design Patterns

26

Model
/ Subject

View

Controller

Factory

Observer

Command

Design Patterns

27

Model
/ Subject

View

Controller

Factory

Observer

Command

Design Patterns

28

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/

Architecture

29

Model
/ Subject

View

Controller

Factory

Observer

Command

/

/

/

/

Architecture

30

Model
/ Subject

View

Controller

Factory

Observer

Command

Architecture

31

Why Document Architecture?

● Blueprint for the system
○ Artifact for early analysis
○ Primary carrier of quality attributes
○ Key to post-deployment maintenance and enhancement

● Documentation speaks for the architect, today and 20 years from today
○ As long as the system is built, maintained, and evolved according to its documented

architecture

● Support traceability.

33

Views and Purposes

● Every view should align with a purpose
● Views should only represent information relevant to that purpose

○ Abstract away other details
○ Annotate view to guide understanding where needed

● Different views are suitable for different reasoning aspects (different
quality goals), e.g.,
○ Performance
○ Extensibility
○ Security
○ Scalability
○ …

34

Common Views in Documenting Software
Architecture
● Static View

○ Modules (subsystems, structures)
and their relations (dependencies, …)

● Dynamic View
○ Components (processes, runnable entities) and connectors (messages, data flow, …)

● Physical View (Deployment)
○ Hardware structures and their connections

35

Common Software Architectures

1. Pipes and Filters

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example:
Compilers

2. Object-Oriented Organization

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

3. Event-Driven Architecture

Example: Node.js

4. Blackboard Architecture

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

5. Layered Systems

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Example: Internet Protocol Suite

Guidelines for selecting a notation

● Suitable for purpose
● Often visual for compact representation
● Usually, boxes and arrows
● UML possible (semi-formal), but possibly constraining

○ Note the different abstraction level – Subsystems or processes, not classes or objects

● Formal notations available
● Decompose diagrams hierarchically and in views
● Always include a legend
● Define precisely what the boxes mean
● Define precisely what the lines mean
● Do not try to do too much in one diagram

○ Each view of architecture should fit on a page
○ Use hierarchy

46

Learning Goals

● Understand the abstraction level of architectural reasoning
● Appreciate how software systems can be viewed at different abstraction

levels
● Distinguish software architecture from (object-oriented) software design
● Use notation and views to describe the architecture suitable to the

purpose
● Document architectures clearly, without ambiguity

47

Next Up

● Microservices

	Introduction to Software Architecture
	Learning Goals
	Views and Abstraction
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Abstracted views focus on conveying specific information
	Software Architecture
	Case Study: Autonomous Vehicle Software
	Case Study: Apollo
	Apollo Software Architecture
	Apollo Hardware Architecture
	Apollo Hardware/Vehicle Overview
	Apollo Perception Module
	Apollo ML Models
	Apollo Software Stack
	Feature Evolution (Software Stack View)
	Software Architecture
	Software Design vs. Architecture
	Levels of Abstraction
	Design vs. Architecture
	Objects
	Design Patterns
	Design Patterns
	Design Patterns
	Architecture
	Architecture
	Architecture
	Why Document Architecture?
	Views and Purposes
	Common Views in Documenting Software Architecture
	Common Software Architectures
	1. Pipes and Filters
	Example:�Compilers
	2. Object-Oriented Organization
	3. Event-Driven Architecture
	Example: Node.js
	4. Blackboard Architecture
	5. Layered Systems
	Example: Internet Protocol Suite
	Slide Number 45
	Guidelines for selecting a notation
	Learning Goals
	Next Up

