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Learning Goals

e Understand the abstraction level of architectural reasoning

e Appreciate how software systems can be viewed at different abstraction
levels

e Distinguish software architecture from (object-oriented) software design

e Use notation and views to describe the architecture suitable to the
purpose

e Document architectures clearly, without ambiguity



Views and Abstraction
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Abstracted views focus on conveying specific
information

They have a well-defined purpose

Show only necessary information

Abstract away unnecessary details

Use legends/annotations to remove ambiguity
Multiple views of the same object tell a larger story



Software Architecture



Case Study: Autonomous Vehicle Software




Case Study: Apollo

Check out the “side pass” feature from the video:
https://www.youtube.com/watch?v=BXNDUtNZdM4

e Discussinteams of 4 how you would implement the side pass feature

Source: https://github.com/ApolloAuto/apollo

Doxygen: https://hidetoshi-furukawa.github.io/apollo-
doxygen/index.html



https://www.youtube.com/watch?v=BXNDUtNZdM4
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html

Apollo Software Architecture
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Apollo Hardware Architecture
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Apollo Hardware/Vehicle Overview
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Apollo Perception Module
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Apollo ML Models
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Apollo Software Stack
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Feature Evolution (Software Stack View)
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Software Architecture

The software architecture of a program or computing system
IS the structure or structures of the system, which

compris the externally visible

and

[Bass et al. 2003]

Note: this definition is ambivalent to
whether the architecture is known or

whether it's any good!
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Software Design vs. Architecture



Levels of Abstraction

e Requirements
o high-level “what” needs to be done

e Architecture (High-level design)

o high-level “how”, mid-level “what”

e (0OO-Design (Low-level design, e.g. design patterns)
o mid-level “how”, low-level “what”

e (Code

o low-level “how”



Design vs. Architecture

Design Questions

How do | add a menu item in NodeBB?

How can | make it easy to create posts
in NodeBB?

What lock protects this data?
How does Google rank pages?

What enc_oder should | use for secure
communication?

What is the interface between objects?

24

Architectural Questions

How do | extend NodeBB with a plugin?

What threads exist and how do they
coordinate?

How does Google scale to billions of hits
per day?

Where should | put my firewalls?

What is the interface between
subsystems?



Objects

Model
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Design Patterns
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Design Patterns
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Design Patterns




Architecture




Architecture
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Why Document Architecture?

e Blueprint for the system
o Artifact for early analysis
o Primary carrier of quality attributes
o Key to post-deployment maintenance and enhancement
e Documentation speaks for the architect, today and 20 years from today
o Aslong as the system is built, maintained, and evolved according to its documented
architecture

e Support traceability.
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Views and Purposes

e Everyview should align with a purpose

e Views should only represent information relevant to that purpose
o Abstract away other details
o Annotate view to guide understanding where needed

e Different views are suitable for different reasoning aspects (different
quality goals), e.g.,

o Performance
Extensibility
Security
Scalability

(O S ORES)
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Common Views in Documenting Software
Architecture

e Static View

o Modules (subsystems, structures)
and their relations (dependencies, ...)

e Dynamic View
o Components (processes, runnable entities) and connectors (messages, data flow, ...)
e Physical View (Deployment)

o Hardware structures and their connections

. [ayS3D



Common Software Architectures



1. Pipes and Filters
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Compilers

wH
uzage (chor ‘name)
1

protrouzage:n
prnttCas ke fie

il

Compiler front-end for language 1

et Language 1 source code

public cinss ongEven |
privmte u

pub Ik Odd Ev:nln{
nput

ulaie 0§

b
pub 1k ki ma St ol
3

}

{-Language 2 source code

e

Compiler front-end for language 2

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Lexical Analyzer (Scanner)

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Non-optimized intermediate code

Intermediate code optimizer

/

Optimized intermediate code

Non-optimized intermediate code

\

Target-1

Code Generator

Target-2
Code Generator

lTarget—l machine code

P ~

\ )

| -;l—

lTarget—Z machine code



2. Object-Oriented Organization

Proc call

obj is a manager

op is an invocation

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021
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3. Event-Driven Architecture
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Example: Node.js
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4. Blackboard Architecture
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5. Layered Systems

Usually
procedure calls

Useful Systems

Composites of
various elements

Users

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021
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Guidelines for selecting a notation

Suitable for purpose
Often visual for compact representation
Usually, boxes and arrows

UML possible (semi-formal), but possibly constraining
o Note the different abstraction level - Subsystems or processes, not classes or objects

Formal notations available

Decompose diagrams hierarchically and in views
Always include a legend

Define precisely what the boxes mean

Define precisely what the lines mean

Do not try to do too much in one diagram
o Each view of architecture should fit on a page

o Use hierarchy
. LayS3D



Learning Goals

e Understand the abstraction level of architectural reasoning

e Appreciate how software systems can be viewed at different abstraction
levels

e Distinguish software architecture from (object-oriented) software design

e Use notation and views to describe the architecture suitable to the
purpose

e Document architectures clearly, without ambiguity
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Next Up

e Microservices
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