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Inspirations: 
Martin Fowler (http://martinfowler.com/articles/microservices.html)
Josh Evans @ Netflix (https://www.youtube.com/watch?v=CZ3wIuvmHeM) 
Matt Ranney @ Uber (https://www.youtube.com/watch?v=kb-m2fasdDY)
Christopher Meiklejohn & Filibuster (http://filibuster.cloud) 
Sam Newman (https://samnewman.io/books/building_microservices/)
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Learning Goals

● Contrast the monolithic application design with a modular design based 
on microservices.

● Principles of Microservices
● Reason about tradeoffs of Microservices architectures.
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Before we get to microservices…
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How might these apps be
architected?
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MONOLITHS
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Monolithic styles
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Source: https://www.seobility.net (CC BY-SA 4.0)



Monolithic styles: MVC Pattern (e.g., NodeBB)
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SERVICE-BASED ARCHITECTURE
Separation of concerns
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Chrome
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Web Browsers
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Browser: A multi-threaded process
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Multi-process browser with IPC
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Browser Architectures
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service Oriented Architecture

● Ability to change components independently
● Independent processes
● Focusing on doing one thing well
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MICROSERVICES
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“Small autonomous services that work well 
together” 

 Sam Newman



Microservices
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source: http://martinfowler.com/articles/microservices.html
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Netflix Discussion
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(as of 2016)
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Monoliths vs Microservices

What are the consequences of this architecture? On:
● Scalability
● Reliability
● Performance
● Development
● Maintainability
● Evolution
● Testability
● Ownership
● Data Consistency
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Advantages of Microservices

● Better alignment with the organization
● Ship features faster and safer
● Scalability
● Target security concerns
● Allow the interplay of different systems and languages, no commitment to 

a single technology stack
● Easily deployable and replicable
● Embrace uncertainty, automation, and faults



Microservice challenges

● Too many choices
● Delay between investment and payback
● Complexities of distributed systems

○ network latency, faults, inconsistencies
○ testing challenges

● Monitoring is more complex
● More system states
● Operational complexity
● Frequently adopted by breaking down a monolithic application
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Principles

Domain Driven 
Modeling

Culture of 
Automation

Hide 
Implementation 

Details

Decentralized 
Governance

Deploy 
Independently

Consumer First

Isolate Failures

Highly 
Observable

Sam Newman’s Principles of Microservices



Principle 1: 
Domain-driven modeling
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Principle 1: 
Domain-driven modeling
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Principle 2:
Culture of Automation
● API-Driven Machine Provisioning
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Example: Infrastructure as code (IaC)

Image source: https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
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Principle 2:
Culture of Automation
● API-Driven Machine Provisioning
● Continuous Delivery
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Image Source: https://learn.microsoft.com/en-us/azure/architecture/microservices/ci-cd



Principle 2:
Culture of Automation
● API-Driven Machine Provisioning
● Continuous Delivery
● Automated Testing
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Automated Testing: ROI
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This is for classical monolithic software projects; what about for Microservices?



Principle 3:
Hide implementation details
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Recall: Encapsulation in OOP



Principle 3:
Hide implementation details
● Design carefully your APIs
● It’s easier to expose some details later than hide them
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Sharing database: Anti-pattern
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Principle 3:
Hide implementation details
● Design carefully your APIs
● It’s easier to expose some details later than hide them
● Do not share your database!
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Principle 4:
Decentralized Governance
● Mind Conway’s Law
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Principle 4:
Decentralized Governance
● Mind Conway’s Law
● You Build It, You Run It
● Embrace team autonomy
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Principle 4:
Decentralized Governance
● Mind Conway’s Law
● You Build It, You Run It
● Embrace team autonomy
● Internal Open Source Model
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Principle 5:
Deploy Independently
● One Service Per OS
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Principle 5:
Deploy Independently
● One Service Per OS
● Consumer-Driven Contracts
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Principle 5:
Deploy Independently
● One Service Per OS
● Consumer-Driven Contracts
● Multiple co-existing versions
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Principle 6:
Consumer First
● Encourage conversations
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Principle 6:
Consumer First
● Encourage conversations
● API Documentation
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Principle 6:
Consumer First
● Encourage conversations
● API Documentation
● Service Discovery
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Principle 7:
Isolate Failure
● Avoid cascading failures
● Timeouts between components
● Bulkheading
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Principle 7:
Isolate Failure
● Avoid cascading failures
● Timeouts between components
● Fail fast: Bulkheading / Circuit breakers
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Principle 8:
Highly Observable
● Standard Monitoring
● Health-Check Pages
● Log and Stats aggregation
● Downstream monitoring

57



Are microservices always the right 
choice?
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Microservices overhead
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SERVERLESS
Taking it to the extreme
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Serverless (Functions-as-a-Service)

● Instead of writing minimal services, write just functions
● No state, rely completely on cloud storage or other cloud services
● Pay-per-invocation billing with elastic scalability
● Drawback: more ways things can fail, state is expensive
● Examples: 

AWS lambda, CloudFlare workers, Azure Functions
● What might this be good for?

● (New in 2019/20) Stateful Functions: 
Azure Durable Entities, CloudFlare Durable Objects
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