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Martin Fowler (http://martinfowler.com/articles/microservices.html)
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Learning Goals

e Contrast the monolithic application design with a modular design based
on microservices.

e Principles of Microservices
e Reason about tradeoffs of Microservices architectures.



Before we get to microservices...
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How might these apps be
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Monolithic styles
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Monolithic styles: MVC Pattern (e.g., NodeBB)
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Separation of concerns

SERVICE-BASED ARCHITECTURE



Chrome



Web Browsers
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)
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https://developers.google.com/web/updates/2018/09/inside-browser-part1

Browser: A multi-threaded process
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)
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https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-process browser with IPC
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Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)
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Browser Architectures

Browser Process
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Service-based browser architecture
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Service-based browser architecture

Renderer Process
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Service Oriented Architecture

e Ability to change components independently
e Independent processes
e Focusing on doing one thing well
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MICROSERVICES
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Microservices Everywhere
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“Small autonomous services that work well
together’

Sam Newman



Microservices
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A monolithic application puts all its -’ A microservices architecture puts ® '
functionality into a single process... & each element of functionality into a

oV separate service...

... and scales by replicating the
monolith on multiple servers

... and scales by distributing these services
across servers, replicating as needed.
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Netflix Discussion
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Monoliths vs Microservices

What are the consequences of this architecture? On:
Scalability

Reliability

Performance

Development

Maintainability

Evolution

Testability

Ownership

Data Consistency
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Advantages of Microservices

Better alignment with the organization

Ship features faster and safer

Scalability

Target security concerns

Allow the interplay of different systems and languages, no commitment to
a single technology stack

Easily deployable and replicable

Embrace uncertainty, automation, and faults



Microservice challenges

e Too many choices
e Delay between investment and payback

Complexities of distributed systems
o network latency, faults, inconsistencies
o testing challenges

Monitoring is more complex

More system states

Operational complexity

Frequently adopted by breaking down a monolithic application
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Independently Microservices

Sam Newman’s Principles of Microservices

Sam Newman
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Principle 1:
Domain-driven modeling

Scope of change
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Principle 1:

Domain-driven modeling
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Principle 2:
Culture of Automation

e API-Driven Machine Provisioning

32



Example: Infrastructure as code (l1aC)

M ==5

Image source: https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
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Principle 2:
Culture of Automation

e API-Driven Machine Provisioning
e Continuous Delivery

34
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Image Source: https://learn.microsoft.com/en-us/azure/architecture/microservices/ci-cd
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Principle 2:
Culture of Automation

e API-Driven Machine Provisioning
e Continuous Delivery
e Automated Testing

36



Automated Testing: ROI

ROI:
Manual vs. Automatedtesting
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Software development cycles

Imbus AG, www.imbus.de

This is for classical monolithic software projects; what about for Microservices?
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Principle 3:
Hide implementation details

Recall: Encapsulation in OOP
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Principle 3:
Hide implementation details

e Design carefully your APIs
e |It's easier to expose some details later than hide them

40



Sharing database: Anti-pattern

Service A

Service B

8/
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Principle 3:
Hide implementation details

e Design carefully your APIs
e |It's easier to expose some details later than hide them
e Do not share your database!
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Principle 4:
Decentralized Governance

Mind Conway's Law

“Organizations which design systems are
constrained to produce designs which are
copies of the communication structures

of these organizations”

- Melvin Conway (1967).
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YOUBUILDIT

YOU RUN
PN 1T

“The traditional model is that you take your software to the wall that
separates development and operations, and throw it over and then
forget about it. Not at Amazon. You build it, you run it. This brings
developers into contact with the day-to-day operation of their
software. It also brings them into day-to-day contact with the
customer. This customer feedback loop is essential for improving the

quality of the service!

-- Werner Vogels in A conversation with Werner Vogels” in ACM Queue, May 2006
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Principle 4:
Decentralized Governance

e Mind Conway’s Law
e You Build It, You Run It
e Embrace team autonomy
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Principle 4:
Decentralized Governance

Mind Conway's Law

You Build It, You Run It
Embrace team autonomy
Internal Open Source Model|
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Principle 5:
Deploy Independently

e One Service Per OS

One Service Per OS Mutiple Services Per OS




Principle 5:
Deploy Independently

e One Service Per OS
e Consumer-Driven Contracts

REAL REQUEST

Test EXPECTED RESPONSE

EXPECTED REQUEST

-
—

REAL RESPONSE

-
-
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Principle 5:
Deploy Independently

e One Service Per OS
e Consumer-Driven Contracts
e Multiple co-existing versions
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Principle 6:
Consumer First

[ Encourage conversations
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Principle 6:
Consumer First

e Encourage conversations
e API Documentation
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Principle 6:
Consumer First

e Encourage conversations
e APl Documentation
e Service Discovery

Mobile App

-

Browser

Locations (IP and Port) are
dynamically changing
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Principle 7:
Isolate Failure

e Avoid cascading failures
e Timeouts between components
e Bulkheading

55



Principle 7:
Isolate Failure

e Avoid cascading failures
e Timeouts between components
e Fail fast: Bulkheading / Circuit breakers

56



Principle 8:
Highly Observable

Standard Monitoring
Health-Check Pages

Log and Stats aggregation
Downstream monitoring
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Are microservices always the right
choice?



Microservices overhead

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,

productivity starts falling

rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity

but remember the skill of the team will
outweigh any monolith/microservice choice
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Taking it to the extreme

SERVERLESS

61
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Serverless (Functions-as-a-Service)

Instead of writing minimal services, write just functions

No state, rely completely on cloud storage or other cloud services
Pay-per-invocation billing with elastic scalability

Drawback: more ways things can fail, state is expensive
Examples:

AWS lambda, CloudFlare workers, Azure Functions

What might this be good for?

(New in 2019/20) Stateful Functions:
Azure Durable Entities, CloudFlare Durable Objects
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