Carnegie
Mellon

Universi
Qatar Y

Microservices

17-313 Fall 2023

Inspirations:

Martin Fowler (http://martinfowler.com/articles/microservices.html)

Josh Evans @ Netflix (https://www.youtube.com/watch?v=CZ3wluvmHeM)
Matt Ranney @ Uber (https://www.youtube.com/watch?v=kb-m2fasdDY)
Christopher Meiklejohn & Filibuster (http://filibuster.cloud)

Sam Newman (https://samnewman.io/books/building_microservices/)

LayS3D

Software and Societal
Systems Department

http://martinfowler.com/articles/microservices.html
https://www.youtube.com/watch?v=CZ3wIuvmHeM
https://www.youtube.com/watch?v=kb-m2fasdDY
http://filibuster.cloud/
https://samnewman.io/books/building_microservices/

Learning Goals

e Contrast the monolithic application design with a modular design based
on microservices.

e Principles of Microservices
e Reason about tradeoffs of Microservices architectures.

Before we get to microservices...

Your scooter is checked
and ready to ride

il you pay?

How might these apps be
architected?

Apple Pay

Scan QR code

During the journey

THE
HAUNTING L ent sooter when rving ® N ®

¢ = Scooter rental

|
i’ \) e
B Play Episade @ More info Watch together 8 = - “

s |

ngrand egi
grend éding

Trending Now

a_ A

. 15 ;mﬁ:-i [updste Statss Add PratosVideo (2 Alax Ristevskiand 1 o
LAREVOLUTION W 2evants
L) News Foag
= Massages)

g, L " i i & -_ aul k B
= Evean ﬁ Vivian Wang Pl R
oRou B i o Bar dary's:

Celertul diry n the baardwalkl

A el b ——r - & Luneh Crew S iy
Tourism kil " & sosees 101)
— S B ¥ 8 Mysic Camping
ey [T Creats Group.., o e =
. P B —
= e I Greg Marra
== { Ciosa Francs H Morts | 3y asaFriend
[Y- ™ e L = -
=ra . Mike Fumble | 1)y Friana
[=] ﬁ BOIWO e rend
== %
I~ Matt Viscomi
==

MONOLITHS

Monolithic styles

n
1
1
Frontend ' Backend
'
1
n
1
- -
| e L e
— —]
1. J
Client Web Server Application Server Database Java App]ication -

Database

Source: https://www.seobility.net (CC BY-SA 4.0)

Monolithic styles: MVC Pattern (e.g., NodeBB)

T

UPDATES MANIPULATES
VIEW CONTROLLER
\
D3 c/
& &
& N
N\ /

17-313 Software Engineering

Separation of concerns

SERVICE-BASED ARCHITECTURE

Chrome

Web Browsers

*I%EI*I

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

11

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Browser: A multi-threaded process

......
" .

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

12

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multi-process browser with IPC

3 Inter Process Communication "
»- o s
R g
y.?

\ / R

J7 7111 (U
S EN \)\\

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

13

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Browser Architectures

Browser Process

Lt I .
L)
-* o B : (AR
i - 3 . H
s
H T a—,- T ﬂ. e M
1 XET————n - -~
R

W
Sagpgannnt?

AS s i =§.-f”
’ =% ”}*

Metwork Process Browser Process Ul Process
fw_? *::“ rl__-d n.::l .. _I.f ,:Hl
."\.I __..j "‘."_ L [- i"\-...
----- b <t 1I‘“"---.._“, L"ﬁiﬁ
" : oy l“:"!"+ 2
'.l :’-.‘ l‘i‘ : -.+ ‘
“.‘: L H e,
Storage Process I T Y GPU Process
- ® :I:- .‘ .'".
B AR i
i T TP
..... . G e,
& .l.‘:i E +.+l' "+.. !.

Device Process
P
H 2y
\::-._.-'J

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

14

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Browser Process

........

s,
.,

000/ — T x\

€« » e

GPU Process
KT A

Service-based browser architecture

Plugin Process

R

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

15

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-based browser architecture

Renderer Process

S wdo i¥

Renderer Process s00/ — —

..—-g@f“ .. -:. m Aw, Snap! € » ef]:

a.com

Renderer Process
Renderer Process v 3 - .
__;,J =% iframe b.com) 3

000/ — —. % —= - AR meow e

Renderer Process

-&ﬁh ’ = iframe c.com

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

o —

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service Oriented Architecture

e Ability to change components independently
e Independent processes
e Focusing on doing one thing well

~ -

17-313 Software Engineering

MICROSERVICES

00—

‘-*i, tHII:IIISEWII:ES
1 & 'y
\ | . /

4
'3 g

x

)&
- «f

Microservices Everywhere

LayS3D

WHATARER_
MICROSERVIGES s

F

“Small autonomous services that work well
together’

Sam Newman

Microservices

/)
¥ COMCAST

NETFLIX ebay a

U B E R GROUPON

A monolithic application puts all its -’ A microservices architecture puts ® '
functionality into a single process... & each element of functionality into a

oV separate service...

... and scales by replicating the
monolith on multiple servers

... and scales by distributing these services
across servers, replicating as needed.

oV

\
Re
. R 4

source: http://martinfowler.com/articles/microservices.html

-’ - JlIE

&

\ 4

v

LayS3D

Netflix Discussion

SERVICE A

SERVICE B

O
L
Q
>
14
L
7

SERVICE E

AppBoot

SERVICE F

24

o
m
Q
>
14
L
n

Bookmarks
Recommendations
My List

Metrics

(as of 2016)

[ayS3D

Monoliths vs Microservices

What are the consequences of this architecture? On:
Scalability

Reliability

Performance

Development

Maintainability

Evolution

Testability

Ownership

Data Consistency

26

Advantages of Microservices

Better alignment with the organization

Ship features faster and safer

Scalability

Target security concerns

Allow the interplay of different systems and languages, no commitment to
a single technology stack

Easily deployable and replicable

Embrace uncertainty, automation, and faults

Microservice challenges

e Too many choices
e Delay between investment and payback

Complexities of distributed systems
o network latency, faults, inconsistencies
o testing challenges

Monitoring is more complex

More system states

Operational complexity

Frequently adopted by breaking down a monolithic application

28

Highly
Observable

Isolate Failures

Domain Driven
Modeling

Culture of
Automation

Hide

Implementation
Details

Decentralized
Governance

Deploy Bmldlng

Independently Microservices

Sam Newman’s Principles of Microservices

Sam Newman

29

Principle 1:
Domain-driven modeling

Scope of change
: 1
Web Ul Web Ul i 1 X |
<<Presentation>> ' | *——1— Showgenre Ul control
Pr
Frontend team FlerEer s <<Presentation>> : :
A A «
[|
1
. I?ackerlld. Backend i | | __Expose current genre, change
<<Business logic>> : ; —
Backend team Usiness Jogic Backendtear <<Business logic>> : i genre APl
1
h : I
1
Dasal:ase Database | «———Storegenre choice
<<Data>>
DBAS DBAS <<Data=> : :

30

Principle 1:

Domain-driven modeling

Frontend

Business
logic

Data

b = = = =

| Expose current genre, change
genre API

+—Store genre choice

Scope of change
| |
T i
1 I
I pu
1 I
] |
1 I
1 I
................ e e
I I
1 I
1 I
Stock Purchase ! Profile |
functionality functionality : functicnality*l'
1 I
] |
1 I
"""""""" | I
1 I
1 I
] |
1 -~
1 I
1 I
L] T
Stockteam Purchase Customer
flow team profile team

31

Principle 2:
Culture of Automation

e API-Driven Machine Provisioning

32

Example: Infrastructure as code (l1aC)

M ==5

Image source: https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code

33

Principle 2:
Culture of Automation

e API-Driven Machine Provisioning
e Continuous Delivery

34

Team A

Team B

Team C

Team D

Y

Release
candidate

A4

7\

Monolith

Production

Team A —
Team B %»
Team C —
Team D —

Microservices

Release Production
Release Production
Release Production
Release Production

Image Source: https://learn.microsoft.com/en-us/azure/architecture/microservices/ci-cd

35

Principle 2:
Culture of Automation

e API-Driven Machine Provisioning
e Continuous Delivery
e Automated Testing

36

Automated Testing: ROI

ROI:
Manual vs. Automatedtesting
40.000
35.000
w 30.000 /
£ 25,000 —
@ 20.000 /,
:,;,- 15.000 -—_7/ —Manual
& 10.000 —Automated
5.000
0
0 1 2 3 4 5 6

Software development cycles

Imbus AG, www.imbus.de

This is for classical monolithic software projects; what about for Microservices?

38

Principle 3:
Hide implementation details

Recall: Encapsulation in OOP

Mq-ﬁmss

, pruivate vaml €— X
< - \
v
Hag,t\rml[) f-‘--.....___/ REST of

sekVar 1() coDE.

_(a,dauu b seltes)

39

Principle 3:
Hide implementation details

e Design carefully your APIs
e |It's easier to expose some details later than hide them

40

Sharing database: Anti-pattern

Service A

Service B

8/

41

Principle 3:
Hide implementation details

e Design carefully your APIs
e |It's easier to expose some details later than hide them
e Do not share your database!

42

Principle 4:
Decentralized Governance

Mind Conway's Law

“Organizations which design systems are
constrained to produce designs which are
copies of the communication structures

of these organizations”

- Melvin Conway (1967).

43

YOUBUILDIT

YOU RUN
PN 1T

“The traditional model is that you take your software to the wall that
separates development and operations, and throw it over and then
forget about it. Not at Amazon. You build it, you run it. This brings
developers into contact with the day-to-day operation of their
software. It also brings them into day-to-day contact with the
customer. This customer feedback loop is essential for improving the

quality of the service!

-- Werner Vogels in A conversation with Werner Vogels” in ACM Queue, May 2006

44

Principle 4:
Decentralized Governance

e Mind Conway’s Law
e You Build It, You Run It
e Embrace team autonomy

45

API

responsible for _.--~ Size/complexity
Business capability-based, e i scoped to not exceed
cross functional, team e the cognitive capacity
Service X M) of team.
LT i - et
% % -7 owns and S
% deploys Module A !
I
% i . Ateamownsaa
% % % P single service unless
% Module B | there is a good reason
! to have more
I

Ry ———

_— Service Z

% owns and
% deploys

46

Principle 4:
Decentralized Governance

Mind Conway's Law

You Build It, You Run It
Embrace team autonomy
Internal Open Source Model|

47

Principle 5:
Deploy Independently

e One Service Per OS

One Service Per OS Mutiple Services Per OS

Principle 5:
Deploy Independently

e One Service Per OS
e Consumer-Driven Contracts

REAL REQUEST

Test EXPECTED RESPONSE

EXPECTED REQUEST

-
—

REAL RESPONSE

-
-

49

Principle 5:
Deploy Independently

e One Service Per OS
e Consumer-Driven Contracts
e Multiple co-existing versions

50

Principle 6:
Consumer First

[Encourage conversations

e}

-~ ineshnest o T |
(,onltpl:) B |
(V \ I Sira 'gjm e !
Wt g g - \ ¥ 4
Lo L"ﬁ ‘ﬁ'm'yﬂ ALes
« floduct * - ,. R
! ¥ Fertzna {- ;

51

Principle 6:
Consumer First

e Encourage conversations
e API Documentation

53

Principle 6:
Consumer First

e Encourage conversations
e APl Documentation
e Service Discovery

Mobile App

-

Browser

Locations (IP and Port) are
dynamically changing

54

Principle 7:
Isolate Failure

e Avoid cascading failures
e Timeouts between components
e Bulkheading

55

Principle 7:
Isolate Failure

e Avoid cascading failures
e Timeouts between components
e Fail fast: Bulkheading / Circuit breakers

56

Principle 8:
Highly Observable

Standard Monitoring
Health-Check Pages

Log and Stats aggregation
Downstream monitoring

\) Home i User Experiers Database: Servers

NextGen Financial

Application Flow Map

vr-caching A

vr-phy.ces ¥
ry

vrlog..ces rservices W
551 cote i
e
“ ® 2errars § min
20 cas i,
[}

22ms web-api B
ch..services
26 calls min Zeals i min
2ms 253ms
[] [)
ch..services wan..lambda
o~

57

232 enoes { min
39 calls fmin, paym...ces
31ms - » A
29 sl { min, [) customer-services
362ms

wv2cats i,
25ems [
A BCCo..Ce5
28 calls / min, 4 29 calls / min. sni-services
342 ms 115 —
cats i,
. ® « o
& redemp...ces
transa...ces @ 285 callsf min 4
B
o A &

Analytics Dashboards & Reports Alert & Respond

10calk /min. E
M3ms

257 calls min, 11m,

AD-Financial 177 call { min,

177 calls f i,
.

ecredit-se. cas

551 calls i
108ms
L) »

; A
e credit-che..ces e

auth-services
mongo-sessions

285 calls f min,
dam,

L errorsmin

mongo-rewards

Business Transaction Health

2eritical, 0 warning, 36 normal

Node Health

0 eritical, 2 warning, 18 nomal

Server Health

Transaction Scorecard

— 97.2%

10%

. 0.2%

. 0.0%

- 16%
Exceptions

~total -/ min

- total -/ min

Are microservices always the right
choice?

Microservices overhead

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,

productivity starts falling

rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity

but remember the skill of the team will
outweigh any monolith/microservice choice

17-313 Software Engineering

Taking it to the extreme

SERVERLESS

61

17-313 Software Engineering

Serverless (Functions-as-a-Service)

Instead of writing minimal services, write just functions

No state, rely completely on cloud storage or other cloud services
Pay-per-invocation billing with elastic scalability

Drawback: more ways things can fail, state is expensive
Examples:

AWS lambda, CloudFlare workers, Azure Functions

What might this be good for?

(New in 2019/20) Stateful Functions:
Azure Durable Entities, CloudFlare Durable Objects

62

	Microservices
	Learning Goals
	Before we get to microservices…
	How might these apps be�architected?
	MONOLITHS
	Monolithic styles
	Monolithic styles: MVC Pattern (e.g., NodeBB)
	Service-based architecture
	Chrome
	Web Browsers
	Browser: A multi-threaded process
	Multi-process browser with IPC
	Browser Architectures
	Service-based browser architecture
	Service-based browser architecture
	Service Oriented Architecture
	Microservices
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Microservices
	Slide Number 23
	Netflix Discussion
	Slide Number 25
	Monoliths vs Microservices
	Advantages of Microservices
	Microservice challenges
	Slide Number 29
	Principle 1: �Domain-driven modeling
	Principle 1: �Domain-driven modeling
	Principle 2:�Culture of Automation
	Example: Infrastructure as code (IaC)
	Principle 2:�Culture of Automation
	Slide Number 35
	Principle 2:�Culture of Automation
	Automated Testing: ROI
	Principle 3:�Hide implementation details
	Principle 3:�Hide implementation details
	Sharing database: Anti-pattern
	Principle 3:�Hide implementation details
	Principle 4:�Decentralized Governance
	Slide Number 44
	Principle 4:�Decentralized Governance
	Slide Number 46
	Principle 4:�Decentralized Governance
	Principle 5:�Deploy Independently
	Principle 5:�Deploy Independently
	Principle 5:�Deploy Independently
	Principle 6:�Consumer First
	Principle 6:�Consumer First
	Principle 6:�Consumer First
	Principle 7:�Isolate Failure
	Principle 7:�Isolate Failure
	Principle 8:�Highly Observable
	Are microservices always the right choice?
	Microservices overhead
	SERVERLESS
	Serverless (Functions-as-a-Service)

