
Microservices
17-313 Fall 2023

Inspirations: 
Martin Fowler (http://martinfowler.com/articles/microservices.html)
Josh Evans @ Netflix (https://www.youtube.com/watch?v=CZ3wIuvmHeM) 
Matt Ranney @ Uber (https://www.youtube.com/watch?v=kb-m2fasdDY)
Christopher Meiklejohn & Filibuster (http://filibuster.cloud) 
Sam Newman (https://samnewman.io/books/building_microservices/)

http://martinfowler.com/articles/microservices.html
https://www.youtube.com/watch?v=CZ3wIuvmHeM
https://www.youtube.com/watch?v=kb-m2fasdDY
http://filibuster.cloud/
https://samnewman.io/books/building_microservices/


Learning Goals

● Contrast the monolithic application design with a modular design based 
on microservices.

● Principles of Microservices
● Reason about tradeoffs of Microservices architectures.

3



Before we get to microservices…

4



How might these apps be
architected?

5



MONOLITHS

6



Monolithic styles

7

Source: https://www.seobility.net (CC BY-SA 4.0)



Monolithic styles: MVC Pattern (e.g., NodeBB)

8



SERVICE-BASED ARCHITECTURE
Separation of concerns

9

17-313 Software Engineering



Chrome

1
0



Web Browsers

11

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Browser: A multi-threaded process

12

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Multi-process browser with IPC

13

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Browser Architectures

14

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture

15

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service-based browser architecture

1
6

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1


Service Oriented Architecture

● Ability to change components independently
● Independent processes
● Focusing on doing one thing well

1
7



MICROSERVICES

1
8

17-313 Software Engineering



1
9



20



2
1

“Small autonomous services that work well 
together” 

 Sam Newman



Microservices

22



source: http://martinfowler.com/articles/microservices.html
23



Netflix Discussion

24

(as of 2016)

Bookmarks

Recommendations

My List

Metrics

AppBoot



25



Monoliths vs Microservices

What are the consequences of this architecture? On:
● Scalability
● Reliability
● Performance
● Development
● Maintainability
● Evolution
● Testability
● Ownership
● Data Consistency

26



Advantages of Microservices

● Better alignment with the organization
● Ship features faster and safer
● Scalability
● Target security concerns
● Allow the interplay of different systems and languages, no commitment to 

a single technology stack
● Easily deployable and replicable
● Embrace uncertainty, automation, and faults



Microservice challenges

● Too many choices
● Delay between investment and payback
● Complexities of distributed systems

○ network latency, faults, inconsistencies
○ testing challenges

● Monitoring is more complex
● More system states
● Operational complexity
● Frequently adopted by breaking down a monolithic application

28



29

Principles

Domain Driven 
Modeling

Culture of 
Automation

Hide 
Implementation 

Details

Decentralized 
Governance

Deploy 
Independently

Consumer First

Isolate Failures

Highly 
Observable

Sam Newman’s Principles of Microservices



Principle 1: 
Domain-driven modeling

30



Principle 1: 
Domain-driven modeling

31



Principle 2:
Culture of Automation
● API-Driven Machine Provisioning

32



Example: Infrastructure as code (IaC)

Image source: https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code

33



Principle 2:
Culture of Automation
● API-Driven Machine Provisioning
● Continuous Delivery

34



35

Image Source: https://learn.microsoft.com/en-us/azure/architecture/microservices/ci-cd



Principle 2:
Culture of Automation
● API-Driven Machine Provisioning
● Continuous Delivery
● Automated Testing

36



Automated Testing: ROI

38

This is for classical monolithic software projects; what about for Microservices?



Principle 3:
Hide implementation details

39

Recall: Encapsulation in OOP



Principle 3:
Hide implementation details
● Design carefully your APIs
● It’s easier to expose some details later than hide them

40



Sharing database: Anti-pattern

41



Principle 3:
Hide implementation details
● Design carefully your APIs
● It’s easier to expose some details later than hide them
● Do not share your database!

42



Principle 4:
Decentralized Governance
● Mind Conway’s Law

43



44



Principle 4:
Decentralized Governance
● Mind Conway’s Law
● You Build It, You Run It
● Embrace team autonomy

45



46



Principle 4:
Decentralized Governance
● Mind Conway’s Law
● You Build It, You Run It
● Embrace team autonomy
● Internal Open Source Model

47



Principle 5:
Deploy Independently
● One Service Per OS

48



Principle 5:
Deploy Independently
● One Service Per OS
● Consumer-Driven Contracts

49



Principle 5:
Deploy Independently
● One Service Per OS
● Consumer-Driven Contracts
● Multiple co-existing versions

50



Principle 6:
Consumer First
● Encourage conversations

51



Principle 6:
Consumer First
● Encourage conversations
● API Documentation

53



Principle 6:
Consumer First
● Encourage conversations
● API Documentation
● Service Discovery

54



Principle 7:
Isolate Failure
● Avoid cascading failures
● Timeouts between components
● Bulkheading

55



Principle 7:
Isolate Failure
● Avoid cascading failures
● Timeouts between components
● Fail fast: Bulkheading / Circuit breakers

56



Principle 8:
Highly Observable
● Standard Monitoring
● Health-Check Pages
● Log and Stats aggregation
● Downstream monitoring

57



Are microservices always the right 
choice?

5
8



Microservices overhead

59



SERVERLESS
Taking it to the extreme

61

17-313 Software Engineering



Serverless (Functions-as-a-Service)

● Instead of writing minimal services, write just functions
● No state, rely completely on cloud storage or other cloud services
● Pay-per-invocation billing with elastic scalability
● Drawback: more ways things can fail, state is expensive
● Examples: 

AWS lambda, CloudFlare workers, Azure Functions
● What might this be good for?

● (New in 2019/20) Stateful Functions: 
Azure Durable Entities, CloudFlare Durable Objects

62

17-313 Software Engineering


	Microservices
	Learning Goals
	Before we get to microservices…
	How might these apps be�architected?
	MONOLITHS
	Monolithic styles
	Monolithic styles: MVC Pattern (e.g., NodeBB)
	Service-based architecture
	Chrome
	Web Browsers
	Browser: A multi-threaded process
	Multi-process browser with IPC
	Browser Architectures
	Service-based browser architecture
	Service-based browser architecture
	Service Oriented Architecture
	Microservices
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Microservices
	Slide Number 23
	Netflix Discussion
	Slide Number 25
	Monoliths vs Microservices
	Advantages of Microservices
	Microservice challenges
	Slide Number 29
	Principle 1: �Domain-driven modeling
	Principle 1: �Domain-driven modeling
	Principle 2:�Culture of Automation
	Example: Infrastructure as code (IaC)
	Principle 2:�Culture of Automation
	Slide Number 35
	Principle 2:�Culture of Automation
	Automated Testing: ROI
	Principle 3:�Hide implementation details
	Principle 3:�Hide implementation details
	Sharing database: Anti-pattern
	Principle 3:�Hide implementation details
	Principle 4:�Decentralized Governance
	Slide Number 44
	Principle 4:�Decentralized Governance
	Slide Number 46
	Principle 4:�Decentralized Governance
	Principle 5:�Deploy Independently
	Principle 5:�Deploy Independently
	Principle 5:�Deploy Independently
	Principle 6:�Consumer First
	Principle 6:�Consumer First
	Principle 6:�Consumer First
	Principle 7:�Isolate Failure
	Principle 7:�Isolate Failure
	Principle 8:�Highly Observable
	Are microservices always the right choice?
	Microservices overhead
	SERVERLESS
	Serverless (Functions-as-a-Service)

