Advanced Testing

17-313, Foundations of Software Engineering, Fall 2023

Learning Goals

e Describe random test-input generation strategies such as fuzz testing

e Characterize challenges of performance testing and suggest strategies

e Reason about failures in microservice applications how chaos engineering
can be applied to test resiliency of cloud-based applications

e Describe A/B testing for usability

e Identify the need for chaos and resilience engineering, and the principles of
chaos engineering

Outline

More static analysis
o annotations

Fuzz Testing

Testing Performance
Testing Usability
Chaos!

Java Checker Framework
Uses annotations to detect common errors

e Uses a conservative analysis to prove the absence of certain defects *

o Null pointer errors, uninitialized fields, certain liveness issues, information leaks, SQL
injections, bad regular expressions, incorrect physical units, bad format strings, ...

o C.f. SpotBugs which makes no safety guarantees

o Assuming that code is annotated and those annotations are correct

e Uses annotations to enhance Java’s type system

CHECKER

framework

https://checkerframework.org/

Taint Analysis
Prevents untrusted (tainted) data from reaching sensitive locations (sinks)

Tracks flow of sensitive information through the program

Tainted inputs come from arbitrary, possibly malicious sources
o User inputs, unvalidated data

Using tainted inputs may have dangerous consequences
o Program crash, data corruption, leak private data, etc.

We need to check that inputs are sanitized before reaching sensitive
locations

Classic Example: SQL Injection

HI, THIS 15

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

St

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~OH.YES LITTNE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
t TOSANMZE YOUR
DATARASE INPUTS.

https://xkcd.com/327

Classic Example: SQL Injection

void processRequest() {
String input = getUserInput();
String query = "SELECT ... " + input;
executeQuery(query);

}

Classic Example: SQL Injection

Tainted input arrives from an untrusted source

void processRequest() {
String input = getUserInput();
String query = "SELECT ... " + input;
executeQuery(query);

}

Tainted input flows to a sensitive sink

Classic Example: SQL Injection

Taint is removed by sanitizing the data

void processRequest() {
String input = getUserInput();
input = sanitizeInput(input);
String query = "SELECT ... "
executeQuery(query);

+ input;

}

We can now safely execute query on
untainted data

Taint Checker: @Tainted and @QUntainted

void processRequest() {
@Tainted String input = getUserInput();
executeQuery(input);

}

public void executeQuery(@Untainted String input) {
/] ...

}

@Untainted public String validate(String userInput) {
/] ...
}

10

Taint Checker: @Tainted and @QUntainted

. Indicates that data is tainted
void processRequest() { |

@Tainted String input———getusSerlnput();

DUt) -
\ executeQuery(input); * Argument must be untainted

public void executeQuery(@Untainted String input) {
/] ...

} Guarantees that return value is untainted

@Untainted public String validate(String userInput) {
/] ...
}

11

Taint Checker: @Tainted and @QUntainted

. Indicates that data is tainted
void processRequest() { |

@Tainted String input———getusSerlnput();

executeQuery(input);
xecuteQuery(input); * Argument must be untainted

}
public void executeQuery(@Untainted String input) {
/] ...
} Guarantees that return value is untainted

@Untainted public String validate(String userInput) {
/] ...
}

[Does this compile? }
12

void processRequest() {
@Tainted String input = getUserInput();
input = validate(input);
executeQuery(input);

} \ Input becomes @Untainted

public void executeQuery(@Untainted String input) {
/] ...
}

@Untainted public String validate(String userInput) {
/] ...
}

13

Does this program compile?

void processRequest() {
@Tainted String input = getUserInput();
if (input.equals("little bobby drop tables")) {
input = validate(input);
}

executeQuery(input);

}

14

Does this program compile? No.

void processRequest() {
@Tainted String input = getUserInput();
if (input.equals("little bobby drop tables")) {
input = validate(input); // @Untainted
}
executeQuery(input); // @Tainted

}

15

*MeTRIC, ENGLISH, WHATEVER.."

Remember the Mars Climate Orbiter incident from 1999?

% sl MSEHI_E Blog Product ~ Solutions Learning ~ Public Projects ~ Case Studies ~ Careers Pricing Log In

When NASA Lost a Spacecraft Due to

a Metric Math Mistake

Blog > CAE Hub > When NASA Lost a Spacecraft Due to a Metric Math Mistake

u N P
Harish March 10th, 2020 11

In September of 1999, after almost 10 months of travel to Mars, the Mars Climate Orbiter burned
and broke into pieces. On a day when NASA engineers were expecting to celebrate, the ground
reality turned out to be completely different, all because someone failed to use the right units,
i.e., the metric units! The Scientific American Space Lab made a brief but interesting video on this

very topic.

NASA'S LOST SPACECRAFT

The Metric System and NASA's Mars Climate Orbiter

The Mars Climate Orbiter, built at a cost of $125 million, was a 338-kilogram robotic space probe
launched by NASA on December 11, 1998 to study the Martian climate, Martian atmosphere, and
surface changes. In addition, its function was to act as the communications relay in the Mars
Surveyor ‘98 program for the Mars Polar Lander. The navigation team at the Jet Propulsion

Laboratory (JPL) used the metric system of millimeters and meters in its calculations, while

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/

16

Units Checker identifies physical unit inconsistencies

® Guarantees that operations are performed on the same kinds and units
e Kind annotations

O (@Acceleration, @Angle, @Area, (@Current, @Length, @Luminance,
@Mass, @Speed, (@Substance, (@Temperature, @Time

® S| unit annotation
© (@m, @km, @mm, @kg, @mPERs, @mPERs2, @radians, @degrees, A,

Vo
C

https://www.nist.gov/pml/weights-and-measures/metric-si/si-units

17

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
@m int x;
X =5 * m;

@m int meters =5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframeyorl chackar nnitc llnitcTanle c-
@m indicates that x represents meters
void demo() { B
@m 1nt Xx;
X =5 * m;

@m int meters =5 *m;. . Toassigna unit, multiply
@s int seconds = 2 * s; appropriate unit constant from
UnitTools

@mPERs int speed = meters / seconds;

@m int foo = meters + seconds;
@s int bar = seconds - meters;

19

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframeyorl chackar nnitc llnitcTanle c-
@m indicates that x represents meters
void demo() {
@m 1nt Xx;
X =5 * m;

@m int meters = 5 *.m; ~To assign a unit, multiply
@s int seconds = 2 * s; appropriate unit constant from
UnitTools

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

20

Does this program compile?

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframeyorl chackar nnitc llnitcTanle c-
@m indicates that x represents meters
void demo() {
@m 1nt Xx;
X =5 * m;

@m int meters = 5 *.m; ~To assign a unit, multiply
@s int seconds = 2 * s; appropriate unit constant from
UnitTools

@mPERs int speed = meters / seconds;
@m int foo = meters + seconds;
@s int bar = seconds - meters;

21

Does this program compile? No.

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() { N .
@m int x; Addition and subtraction between

X =5 * m; meters and seconds is physically
meaningless

@m int meters =5 * m;
@s int seconds = 2 * s;

@mPERs int speed = meters / sec 3
@m int foo = meters + seconds;
@s int bar = seconds - meters;

Checker Framework: Limitations

e Can only analyze code that is annotated

o Requires that dependent libraries are also annotated
o Can be tricky, but not impossible, to retrofit annotations into existing codebases

e Only considers the signature and annotations of methods
o Doesn’t look at the implementation of methods that are being called

e Beware of dynamically generated code!
o Spring Framework

e (Can produce false positives!
o Byproduct of necessary approximations

What static analysis tools should | use?

The best QA strategies employ a combination of tools

How Many of All Bugs Do We Find?
A Study of Static Bug Detectors

Andrew Habib
andrew.a.habib@gmail.com
Department of Computer Science
TU Darmstadt
Germany

ABSTRACT

Static bug detectors are becoming increasingly popular and are
widely used by professional software developers. While most work
on bug detectors focuses on whether they find bugs at all, and
on how many false positives they report in addition to legitimate
warnings, the inverse question is often neglected: How many of all
real-world bugs do static bug detectors find? This paper addresses
this question by studying the results of applying three widely used
static bug detectors to an extended version of the Defects4] dataset
that consists of 15 Java projects with 594 known bugs. To decide
which of these bugs the tools detect, we use a novel methodology
that combines an automatic analysis of warnings and bugs with a
manual validation of each candidate of a detected bug. The results
of the study show that: (i) static bug detectors find a non-negligible
amount of all bugs, (ii) different tools are mostly complementary to
each other, and (iii) current bug detectors miss the large majority
of the studied bugs. A detailed analysis of bugs missed by the static
detectors shows that some bugs could have been found by variants
of the existing detectors, while others are domain-specific problems
that do not match any existing bug pattern. These findings help
potential users of such tools to assess their utility, motivate and out-
line directions for future work on static bug detection, and provide
a basis for future comparisons of static bug detection with other
bug finding techniques, such as manual and automated testing.

Michael Pradel
michael@binaervarianz.de
Department of Computer Science
TU Darmstadt
Germany

International Conference on Automated Software Engineering (ASE '18), Sep-
tember 3-7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3238147.3238213

1 INTRODUCTION

Finding software bugs is an important but difficult task. For average
industry code, the number of bugs per 1,000 lines of code has been
estimated to range between 0.5 and 25 [21]. Even after years of
deployment, software still contains unnoticed bugs. For example,
studies of the Linux kernel show that the average bug remains in
the kernel for a surprisingly long period of 1.5 to 1.8 years [8, 24].
Unfortunately, a single bug can cause serious harm, even if it has
been subsisting for a long time without doing so, as evidenced by
examples of software bugs that have caused huge economic loses
and even killed people [17, 28, 46].

Given the importance of finding software bugs, developers rely
on several approaches to reveal programming mistakes. One ap-
proach is to identify bugs during the development process, e.g..
through pair programming or code review. Another direction is
testing, ranging from purely manual testing over semi-automated
testing, e.g., via manually written but automatically executed unit
tests, to fully automated testing, e.g.. with Ul-level testing tools.
Once the software is deployed, runtime monitoring can reveal so
far missed bues. e.g.. collect information about abnormal runtime

SpotBugs
Tool Bugs
Error Prone 8 14
Infer 5 > >
SpotBugs 18 0
Total: 31 6 0 !

Total of 27 unique bugs

Error Prone Infer

Figure 4: Total number of bugs found by all three static
checkers and their overlap.

https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf

25

Dynamic analysis

Fuzz Testing

Security and Robustness

S3D

Barton P. Miller, Lars Fredriksen and Bryan So

Study of the
Reliability of

A

uUtilities

COMMUNICATIONS OF THE ACM/ Decerber 1990/Vol.33, No.12 33

Communications of the ACM (1990)

(14

On a
dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home
and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters were causing programs to
crash.

29

Fuzz Testing

w0019[a%#

/dev/random

m Execute

Program

R

A 1990 study found crashes in:

adb, as, bc, cb, col, diction, emacs, eqn, fip,
indent, lex, look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style, tsort, uniq,
vgrind, vi

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting, executing untrusted
code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-free,
assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

Strengths and Limitations

e Exercise: Write down two strengths and two weaknesses of fuzzing.
Bonus: Write down one or more assumptions that fuzzing depends on.

31

Strengths and Limitations

Strengths:
Cheap to generate inputs
Easy to debug when a failure is identified

Limitations:
Randomly generated inputs don’t make sense most of the time.
E.g. Imagine testing a browser and providing some ”input” HTML randomly:

Unlikely to exercise interesting behavior in the web browser
Can take a long time to find bugs. Not sure when to stop.

32

Mutation-Based Fuzzing (e.g. Radamsa)

<foo></foo> <wo00>?7</00>
Initial Pick Random Execute
>

b

33

Mutation Heuristics

= Binary input

Bit flips, byte flips

Change random bytes
Insert random byte chunks
Delete random byte chunks

» Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, O, 1, -1,

= Textinput
» Insert random symbols relevant to format (e.g. “<" and “>" for xml)
» Insert keywords from a dictionary (e.g. “<project>" for Maven POM.xml)
= GUIl input
Change targets of clicks
Change type of clicks
Select different buttons
Change text to be entered in forms
... Much harder to design

Coverage-Guided Fuzzing (e.g. AFL)

Initial

e

=

Pick

A

Add
Input’

<foo></foo> <wo00>7</00>

Random m Execute

Execution feedback

New

branch
coverage?

35

v
-

Coverage
Instrumentation

Now that you can do better than this:

How do you make programs “crash gracefully” when a bug is
encountered?

S3D

Automatic Oracles: Sanitizers

Address Sanitizer (ASAN) ***
LeakSanitizer (comes with ASAN)
Thread Sanitizer (TSAN)
Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

Is it null?

= int get el t(int* a, int i
AddressSanitizer oy o
return a[i];

}

int get_element(int* a, int i) {
return a[i];

} Is the access out of bounds?

int get_element(int* a, int i) {

if (a == NULL) abort();

region = get_allocation(a);

if (in_heap(region)) {
low, high = get_bounds(region);
if ((a + i) < low || (a +i) > high) {

abort();

}

}

return a[i];

Is this a reference to a stack-allocated variable after return?

int get_element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_stack(region)) {
if (popped(region)) abort();

}
if (in_heap(region)) { ... }
return a[i];

}

AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer

Asan is a memory error detector for C/C++. It finds:

o Use after free (dangling pointer dereference)
Heap buffer overflow
Stack buffer overflow
Global buffer overflow
Use after return

Use after scope
Initialization order bugs
Memory leaks

Slowdown about 2x on SPEC CPU 2006

l 4

456 mmer 462ﬂ>qua Tiomnepp 483xalnchuk 444 remd averape
einasiret 473, 7 deail phin

o 0 O O O o o©°

Elon Musk & @elonmusk - Nov 13
Btw, I’d like to apologize for Twitter being super slow in many countries.
App is doing >1000 poorly batched RPCs just to render a home timeline!

0g0

7&» Readers added context they thought people might want to know

Twitter uses GraphQL, not RPC. A number of software engineers have
u stated that this tweet makes no sense, in several different ways.
I tl n blog.twitter.com/engineering/en...

about.sourcegraph.com/blog/graphql/g...
twitter.com/bgleib/status/...
twitter.com/sachee/status/...
twitter.com/Robyr/status/1...

e O rl I l a n Ce twitter.com/BriannaWu/stat...
twitter.com/Carnage4Life/s...

twitter.com/not_runspired/...
twitter.com/samifouad/stat...

Do you find this helpful? Rate it

Context is written by people who use Twitter, and appears when rated helpful by
others. Find out more.

Q© 226K T 13.2K Q 154K &

S3D

40

Performance Testing

e Goal: Identify performance bugs. What are these?

o Unexpected bad performance on some subset of inputs
o Performance degradation over time
o Difference in performance across versions or platforms

e Not as easy as functional testing. What's the oracle?

o Fast =good, slow = bad // but what's the threshold?
o How to get reliable measurements?
o How to debug where the issue lies?

41

Profiling

Finding bottlenecks in execution time and memory

Flame Graph

Flame graphs are a popular visualization of resource consumption by call

stack.

—— N

e T
_===§
=== Nlmml‘mll
unlull
..'.7
| .
B
i
—_——— e

-

S3D

42

Performance-driven Design

e Modeling and simulation
o e.g.queuing theory
e Specify load distributions
and derive or test

configurations

&2 View Report - 3 - Multithreading and QueuingArchitecture Simulator

Evaluation Summary

Property | Value
Scenario Scenariol
Number of users 5
Transaction Generation Rate 3
Actual Simulation Load
Actual Network Load 1]
No, of System Transactions Generated {5T1=24, 5ST2=24}
No. of System Transactions Completed {5T1=24, 5T2=24}
Averaoe System Transaction Completion Time 156938
Choose a Graph
.
@ g View Error Report
& Asset
9 Database
AAAAA p ; »

Overview Acme Source | ClientServer |

~— Palette ——

Masls Problems | Acme Performance Simulator View Acme Security Simulator Yiew i lm

Rules = Specify Performance Properties
Structure Performance Values | Error Handling
Types Response Range (Seconds) System Resources
5 T 5 r Consumed (in %) 0
Representations Transaction Complexity | Very Simple Simple Average
e Minioum Value | 1.02 1.041 [1.06 Mutithreaded - [¥] Queve
Sorce Maximum Value | 1.03 1.05 [1.07 Max, Threads: Queue Size: L
Visuals Cancel
‘ 5 | 100
Performance
[
| [Fspecify Performance Properties
0° | Performance Values | Error Handling |
|~ Error Handiing
Errors Selected Parameters | Value Error Handling Mechanism
Process Crash Successful system trans. (%) | 99 Connect to another Thread, Log v

43

Mf’

Stress testing

e Robustness testing technique: test beyond the limits of normal operation.

e Can apply at any level of system granularity.
e Stress tests commonly put a greater emphasis on robustness, availability,

and error handling under a heavy load, than on what would be
considered “correct” behavior under normal circumstances.

44

Soak testing

e Problem: A system may behave exactly as expected under artificially
limited execution conditions.

o E.g., Memory leaks may take longer to lead to failure (also motivates static/dynamic
analysis, but we'll talk about that later).

e Soak testing: testing a system with a significant load over a significant
period of time (positive).

e Used to check reaction of a subject under test under a possible
simulated environment for a given duration and for a given threshold.

45

Testing Usabillity

46

" ¥ Elon Musk @
. @elonmusk

Do you want an edit button?

yse 73.6%
on 26.4%

4,406,764 votes - Final results

8:48 PM - Apr 4, 2022 - Twitter for iPhone

Automating GUI/Web Testing

e Thisis hard
e (Capture and Replay Strategy

O mouse actions
o system events

e Test Scripts: (click on button labeled "Start" expect value X in field Y)
® Lots of tools and frameworks

o e.g.Selenium for browsers

Verify that expected
State reached

Failure analysis I <

47

Usability: A/B testing

e Controlled randomized experiment with two variants, A and B, which are
the control and treatment.

e One group of users given A (current system); another random group
presented with B; outcomes compared.

e Often used in web or GUI-based applications, especially to test advertising
or GUI element placement or design decisions.

48

Example

e A company sends an advertising email to its customer database, varying
the photograph used in the ad...

49

Example: group A (99% of users)

50

Example: group B (1%)

Act now!
Sale ends
soon!

&)S3D

51

A/B Testing

e Requires good metrics and statistical tools to identify significant
differences.

e E.g. clicks, purchases, video plays

e Must control for confounding factors

52

IT'S OKRYITS lllllﬂll_
« ITSTOTALLY NORMAL ¢

< "

Microservice Failures
and
Chaos Engineering

rrsmsr CHAOS:

leumil‘ii‘é
mgf’i “COm: '

Slides credit: Christopher Meiklejohn

/

F’

S3D

53

Microservice Application

Remember, these calls are messages

sent on an unreliable network.

&)S3D

54

1.

Failures in Microservice Architectures

Network may be partitioned
Server instance may be down

Communication between services
may be delayed

Server could be overloaded and
responses delayed

Server could run out of memory or
CPU

55

Where Do We Start?

How do we even begin to test these scenarios?

Are there any techniques or software that can be used to test
these types of failures?

Chaos Engineering!

56

What is chaos engineering?

e "Chaos Engineering is the discipline of experimenting on a system in
order to build confidence in the system's capability to withstand

turbulent conditions in p rOd U Ct| on-
principlesofchaos.org

Why would you break things on purpose?

Game Days

Purposely injecting failures into critical systems in order to:

e |dentify flaws and “latent defects”

e I|dentify subtle dependencies (which may or may not lead to a flaw/defect)
e Prepare a response for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

59

Game Days

Large-scale applications are built on and with “unreliable” components
Failure is inevitable (fraction of percent; at Google scale, ~multiple times)

Goals:

e Preemptively trigger the failure, observe, and fix the error
e Script testing of previous failures and ensure system remains resilient
e Build the necessary relationships between teams before disaster strikes

60

Example: Amazon GameDay

Full data center destruction (Amazon EC2 region)

No advanced notice of which data center will be taken offline

No notice of when the data center will be taken offline

Only advance notice (months) that a GameDay will be happening
Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for
detecting errors and paging employees was located in the zone of the failure!

Not all failures can be actually
performed and must be simulated!

S3D

61

Other examples: Google

Terminate network in Sao Paulo for testing:
e Hidden dependency takes down links in Mexico which would have

remained undiscovered without testing

Turn off data center to find that machines won't come back:
e Ran out of DHCP leases (for IP address allocation) when a large number of

machines come back online unexpectedly.

62

Netflix is another heavy cloud user...

Significant deployment in Amazon Web Services in order to remain
elastic in times of high and low load (first public, 100% w/o content delivery.)

Pushes code into production and modifies runtime configuration
hundreds of times a day

Key metric: availability

SPS is the
primary

indicator 1730 2015 2300 0145 0430 07:15 10:00 1245 15:00
of the system'’s Time
overall health.

FIGURE 2. A graph of SPS ([stream] starts per second) over a 24-hour period. This
metric varies slowly and predictably throughout a day. The orange line shows the trend
for the prior week. The y-axis isn't labeled because the data is proprietary.

S3D

63

Chaos monkey/Simian army

e A Netflix infrastructure testing
system.

e “Malicious” programs randomly
trample on components,
network, data-centers, AWS

instances...

o Force failure of components to make
sure that the system architecture is
resilient to unplanned/random
outages.

e Netflix has open-sourced their
chaos monkey code.

64

Exit Ticket

e What is the primary objective of fuzz testing in software development?
e primary goal of chaos engineering in the context of software systems?

