
2 2 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

T
his isn’t programming, this is archaeol-
ogy!” the programmer complained,
wading through the ancient rubble of
some particularly crufty piece of code.
(One of our favorite jargon words:
www.tuxedo.org/~esr/jargon/html/entry/

crufty.html.) It’s a pretty good analogy, actu-
ally. In real archaeology, you’re investigating

some situation, trying to understand what
you’re looking at and how it all fits together.
To do this, you must be careful to preserve
the artifacts you find and respect and under-
stand the cultural forces that produced them.

But we don’t have to wait a thousand
years to try to comprehend unfathomable ar-
tifacts; code becomes legacy code just about
as soon as it’s written, and suddenly we have
exactly the same issues as the archaeologists:
What are we looking at? How does it fit in
with the rest of the world? And what were
they thinking? It seems we’re always in the
position of reading someone else’s code: ei-
ther as part of a code review, or trying to cus-
tomize a piece of open source software, or
fixing a bug in code that we’ve inherited.

This analogy is such a compelling and po-
tentially useful one that Dave, Andy, Brian
Marick, and Ward Cunningham held a
workshop on Software Archaeology at
OOPSLA 2001 (the annual ACM Confer-
ence on Object-Oriented Programming, Sys-
tems, Languages, and Applications). The
participants discussed common problems of
trying to understand someone else’s code
and shared helpful techniques and tips (see
the “Tools and Techniques” sidebar).

Roll up your sleeves
What can you do when someone dumps

250k lines of source code on your desk and
simply says, “Fix this”? Take your first cue
from real archaeologists and inventory the
site: make sure you actually have all the
source code needed to build the system.

Next, you must make sure the site is secure.
On a real dig, you might need to shore up the
site with plywood and braces to ensure it does-
n’t cave in on you. We have some equivalent
safety measures: make sure the version control
system is stable and accurate (CVS is a popu-
lar choice; see www.cvshome.org). Verify that
the procedures used to build the software are
complete, reliable, and repeatable (see the Jan-
uary/February issue’s column for more on this
topic).

Be aware of build dependency issues: in
many cases, unless you build from scratch,
you’re never really sure of the results. If
you’re faced with build time measured in
hours, with multiple platforms, then the in-
vestment in accurate dependency manage-
ment might be a necessity, not a luxury.

Draw a map as you begin exploring the

software construction

Software Archaeology
Andy Hunt and Dave Thomas

Editors: Andy Hunt and Dave Thomas � The Pragmatic Programmers � www.pragmaticprogrammer.com

M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 2 3

SOFTWARE CONSTRUCTION

code. (Remember playing Colossal
Cave? You are in a maze of twisty lit-
tle passages, all alike….) Keep de-
tailed notes as you discover priceless
artifacts and suspicious trapdoors.
UML diagrams might be handy (on
paper—don’t get distracted by a
fancy CASE tool unless you’re al-
ready proficient), but so too are sim-
ple notes. If there are more than one
of you on the project, consider using
a Wiki or similar tool to share your
notes (you can find the original Wiki
at www.c2.com/cgi/wiki?WikiWiki-
Web and a popular implementation
atwww.usemod.com/cgi-bin/wiki.pl.

As you look for specific keywords,
routine names, and such, use the
search capabilities in your integrated
development environment (IDE), the
Tags feature in some editors, or tools
such as Grep from the command line.
For larger projects, you’ll need larger
tools: you can use indexing engines
such as Glimpse or SWISH++ (simple
Web indexing system for humans) to
index a large source code base for
fast searching.

The mummy’s curse
Many ancient tombs were ru-

mored to be cursed. In the software
world, the incantation for many of
these curses starts with “we’ll fix it
later.” Later never comes for the
original developers, and we’re left
with the curse. (Of course, we never
put things off, do we?)

Another form of curse is found in
misleading or incorrect names and
comments that help us misunder-
stand the code we’re reading. It’s
dangerous to assume that the code or
comments are being completely
truthful. Just because a routine is
named readSystem is no guarantee
that it isn’t writing a megabyte of
data to the disk.

Programmers rarely use this sort
of cognitive dissonance on purpose;
it’s usually a result of historical acci-
dent. But that can also be a valuable
clue: how did the code get this way,
and why? Digging beneath these lay-
ers of gunk, cruft, and patch upon
patch, you might still be able to see
the original system’s shape and gain

insight into the changes that were re-
quired over the years.

Of course, unless you can prove oth-
erwise, there’s no guarantee that the
routine you’re examining is even being
called. How much of the source con-
tains code put in for a future that never
arrived? Static analysis of the code can
prove whether a routine is being used in
most languages. Some IDEs can help
with this task, or you can write ad hoc
tools in your favorite scripting lan-
guage. As always, you should prove as-
sumptions you make about the code. In
this case, adding specific unit tests helps
prove—and continue to prove—what a
routine is doing (see www.junit.org for
Java and www.xprogramming.org for
other languages).

By now, you’ve probably started
to understand some of the terminol-
ogy that the original developers used.
Wouldn’t it be great to stumble
across a Rosetta stone for your pro-
ject that would help you translate its
vocabulary? If there isn’t one, you
can start a glossary yourself as part
of your note-taking. One of the first
things you might uncover is that
there are discrepancies in the mean-
ing of terms from different sources.
Which version does the code use?

Duck blinds and aerial views
In some cases, you want to ob-

serve the dynamics of the running
system without ravaging the source
code. One excellent idea from the
workshop was to use aspects to sys-
tematically introduce tracing state-
ments into the code base without

editing the code directly (AspectJ for
Java is available at www.aspectj.org).
For instance, suppose you want to
generate a trace log of every database
call in the system. Using something
like Aspect-J, you could specify what
constitutes a database call (such as
every method named “db*’” in a
particular directory) and specify the
code to insert.

Be careful, though. Introducing
any extra code this way might pro-
duce a “Heisenbug,” a bug intro-
duced by the act of debugging. One
solution to deal with this issue is to
build in the instrumentation in the
first place, when the original devel-
opers are first building and testing
the software. Of course, this brings
its own set of risks. One of the par-
ticipants described an ancient but
still used mainframe program that
only works if the tracing statements
are left in.

Whether diagnostic tracing and
instrumentation are added originally
or introduced later via aspects, you
might want to pay attention to what
you are adding, and where. For in-
stance, say you want to add code that
records the start of a transaction. If
you find yourself doing that in 17
places, this might indicate a struc-
tural problem with the code—and a
potential answer to the problem
you’re trying to solve.

Instead of hiding in a “duck
blind” and getting the view on the
ground, you might want to consider
an aerial view of the site. Synoptic,
plotting, and visualization tools pro-
vide quick, high-level summaries that
might visually indicate an anomaly in
the code’s static structure, in the dy-
namic trace of its execution, or in the
data it handles. For instance, Ward
Cunningham’s Signature Survey
method (http://c2.com/doc/Signa-
tureSurvey) reduces each source file
to a single line of the punctuation.
It’s a surprisingly powerful way of
seeing a file’s structure. You can also
use visualization tools to plot data
from the volumes of tracing informa-
tion languishing in text files.

As with real archaeology, it pays to
be meticulous. Maintain a deliberate

Instead of hiding in a
“duck blind” and getting
the view on the ground,

you might want to
consider an aerial view

of the site.

2 4 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2

SOFTWARE CONSTRUCTION

pace; keep careful records. Even for a
short term, quick patch that doesn’t
require you to understand the whole
code base, keep careful records of
what you’ve learned, what you’ve
tried, what worked, and what didn’t.

What were they thinking?
Archaeologists generally don’t

make wisecracks about how stupid a
particular culture was (even if they
did throw dead bodies into the only
good drinking well). In our industry,
we generally don’t show such re-
straint. But it’s important when read-
ing code to realize that apparently
bone-headed decisions that appear to
be straight out of a “Dilbert” cartoon
seemed perfectly reasonable to the de-
velopers at the time. Understanding
“what they were thinking” is critical
to understanding how and why they
wrote the code the way they did.

If you discover they misunderstood
something, you’ll likely find that mis-
take in more than one place. But rather
than simply “flipping the bozo bit” on
the original authors, try to evaluate
their strengths as well as weaknesses.
You might find lost treasure—buried
domain expertise that’s been forgotten.

Also, consider to which “school of
programming’” the authors be-
longed. Regardless of implementa-
tion language, West-Coast Smalltalk-
ers will write in a different style from
European Modula programmers, for
instance. In a way, this approach gets
us back to the idea of treating code as
literature. What was the house style?

By understanding what the devel-
opers were thinking, what influenced
them, what techniques they were
fond of, and which ones they were
unaware of, you will be much better
positioned to fully understand the
code they produced and take it on as
your own.

Leaving a legacy
Given that today’s polished code

will inevitably become the subject of
some future developer’s archaeologi-
cal dig, what can we do to help
them? How can we help them com-
prehend “what we were thinking”
and work with our code?

� Ensure the site is secure when you
leave. Every file related to the pro-
ject should be under version con-
trol, releases should be appropri-

ately identified, and the build
should be automatic and reliable.

� Leave a Rosetta stone. The project
glossary was useful for you as you
learned the domain jargon; it will
be doubly useful for those who
come after you.

� Make a simple, high-level treasure
map. Honor the “DRY” principle:
Don’t duplicate information that’s
in the code in comments or in a
design document. Comments in
the code explain “why,” the code
itself shows “how,” and the map
shows where the landscape’s main
features are located, how they re-
late to each other, and where to
find more detailed information.

� Build in instrumentation, tracing,
and visualization hooks where ap-
plicable. This could be as simple
as tracing “got here” messages or
as intricate as an embedded HTTP
server that displays the applica-
tion’s current status (our book,
The Pragmatic Programmer (Ad-
dison-Wesley, 2000) discusses
building testable code).

� Use consistent naming conven-
tions to facilitate automatic static
code analysis and search tools. It
helps us humans, too.

� No evil spells. You know what the
incantations sound like. Don’t let
the mummy’s curse come back to
haunt programmers later. The
longer a curse festers and grows,
the worse it is when it strikes—
and curses often backfire against
their creators first.

Acknowledgments
Many thanks to the other workshop orga-

nizers, Brian Marick and Ward Cunningham,
and to the attendees: Ken Anderson, Vladimir
Degen, Chet Hendrickson, Michael Hewner,
Kevin Johnson, Norm Kerth, Dominik
Kuropka, Dragos Manolescu, John McIntosh,
Walter Risi, Andy Schneider, Glenn Vander-
burg, and Charles Weir.

Andy Hunt and Dave Thomas are partners in The Pragmatic
Programmers, LLC. They feel that software consultants who can’t
program shouldn’t be consulting, so they keep current by devel-
oping complex software systems for their clients. They also offer
training in modern development techniques to programmers and
their management. They are co-authors of The Pragmatic Pro-
grammer and Programming Ruby, both from Addison-Wesley.
Contact them via www.pragmaticprogrammer.com.

Tools and Techniques

The workshop identified these analysis tools and techniques:

� Scripting languages for
–ad hoc programs to build static reports (included by and so on)
–filtering diagnostic output

� Ongoing documentation in basic HTML pages or Wikis
� Synoptic signature analysis, statistical analysis, and visualization tools
� Reverse-engineering tools such as Together’s ControlCenter
� Operating-system-level tracing via truss and strace
� Web search engines and tools to search for keywords in source files
� IDE file browsing to flatten out deep directory hierarchies of the source
� Test harnesses such as Junit and CPPUnit
� API documentation generation using Javadoc, doxygen, and so on
� Debuggers

Participants also identified these invasive tools:

� Hand-inserted trace statements
� Built-in diagnostic instrumentation, enabled in production code as well
� Instrumentation to log history of data values at interface calls
� Use of AspectJ to introduce otherwise invasive changes safely

