
116 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Robert Blumen
Symphony Commerce
robert@robertblumen.com

Microservices
Johannes Thönes

ONE GOAL of the Software Engineer-
ing Radio podcast is to be a source of
information about the latest archi-
tectural trends. Trends emerge from
practice and take a while to show up
in written form. The � rst book on mi-
croservices isn’t due until spring 2015.
For the professional software engineer,
conferences, online talks, and podcasts
are often the best sources for the new-
est information.

In this month’s podcast (episode 213),
Johannes Thönes talks with James Lewis
about microservices. This podcast is the
third one in the fall schedule to address
this topic. In episode 210, Stefan Tilkov
discusses architecture and microservices;
in episode 216, Net� ix architect Adrian
Cockroft discusses the cloud-based plat-
form. The upcoming episode 217 on the
Docker container covers a popular piece
in the deployment of these systems (see
the sidebar).

The following excerpt contains only
a fraction of the show. Space didn’t per-
mit us to include discussions covering
the relationship between microservices
and Conway’s law, CQRS (Command
Query Responsibility Segregation),
REST (representational state transfer),
operational complexity and the impact
on development operations, “isn’t this
just SOA?,” agile development, testing,
and monitoring.

I hope you’ll download the entire
show and listen. —Robert Blumen

What’s a microservice?
A microservice, in my mind, is a small
application that can be deployed inde-

pendently, scaled independently, and
tested independently and that has a sin-
gle responsibility. It is a single responsi-
bility in the original sense that it’s got a
single reason to change and/or a single
reason to be replaced. But the other axis
is a single responsibility in the sense that
it does only one thing and one thing
alone and can be easily understood.

What would such a single thing be?
An example of a single thing might be a
single responsibility in terms of a func-
tional requirement, or it might be in
terms of a nonfunctional requirement
or, as we’ve started talking about them,
cross-functional requirements.

An example might be a queue
 processor—something that’s reading
a message from a queue, performing a
small piece of business logic, and then
passing it on. Or it might be something
that’s cross-functional, or nonfunc-
tional, or it might be something that has
the responsibility for serving a particu-
lar resource or resource representation.

Like a user.
Like a user or, say, an article, or it might
be a risk in insurance or something like
this, but something that’s very focused
and very small and that performs a sin-
gle task on its own.

I have the impression that microser-
vices have become quite popular. Why
do you think that is?

SOFTWARE
ENGINEERING

Continued on p. 113

s1sen.indd 116 12/9/14 3:07 PM

	 JANUARY/FEBRUARY 2015 | IEEE SOFTWARE � 113

SOFTWARE ENGINEERING

We’ve got this big application. It’s
been growing for two-and-a-half
years or five years or 10 years, but
we can’t maintain it anymore. It’s
just too difficult to actually make
any functional changes to it. We
need to deploy this application
into the cloud. We need software
as a service, but at the moment
that is impossible.

As a result of that, the ideas
evolved of starting to splitting ap-
plications into smaller cooperating
components that are running out of
process and talking to one another,
which can be maintained separately,
scaled separately, or thrown away if
needed.

A number of different communi-
ties have grown over time that have
demonstrated that this approach to
building software is viable for pro-
duction. When you look at com-
panies on the scale of Netflix, then
it’s almost a necessity as they grow
income. Adrian Cockroft has said
that they work this way because
they want to build systems and make
changes as fast as possible.

To answer your question, ‘Why is
it so popular now?’ a lot of organi-
zations have built up technical debt
over the last number of years. They
have realized that to scale more, to
be more effective at delivering soft-
ware into production, and to take
advantage of things like continuous
delivery, they need an approach that
allows them to do scale along differ-
ent axes independently of things like
continuous delivery.

I think it’s about the right time
for an idea like microservices to take
off because a lot of companies are
facing the same problems.

You said something interesting
about how people with a large
monolithic application are split-

ting it into microservices. Is there
a typical form of introducing
microservices?
That’s a great question and one I’ve
actually been struggling with. It goes
right to the heart of the question: do
you start with microservices, or do
you refract to them later?

Empirically, most of the organi-
zations have actually started with
something big and have split that
big thing up. That’s the case for
most organizations that are build-
ing a microservices-style imple-
mentation. For example, Netflix.
The canonical example is Amazon.
Amazon started with a big data-
base and then moved to a service-
oriented architecture.

Let’s talk a little bit more about
how you technically build a mi-
croservice. When I build a mi-
croservice for user authentication,
what languages would I use? What
standards do I build on, and what
do I need to do to make it happen?
One of the guiding principles be-
hind this is that you get the freedom
to choose a lot of your tooling on
a case-by-case basis. Rather than it
being a particular language or par-
ticular back-end data store for your
entire product stack, you get the
flexibility to make informed deci-
sions based on the right tooling for
the situation at hand.

There are no right or wrong
choices. If you’re talking about a
user service, it is easily implemented
in C#, Java, or any other modern
programing language. Pretty much
any programming language is going
to be suitable.

The key thing is to make the
stack lightweight. Rather than us-
ing the traditional heavy stacks and
deploying them into big application
containers (like JBoss and Tomcat),

you can use lightweight alternatives,
such as embedded Jetty, embedded
Tomcat, SimpleWeb, or WebIt.

.NET-land is an interesting place
at the moment because traditionally
it has deployed into IIS. We’ve de-
ployed all of our applications into
this managed environment. But even
in the .NET world, there’s been a
movement to bring in some of their
learnings from the Unix and Java
communities around using embed-
ded services. For example, we’re see-
ing more projects using a non-CFX
alternative to some of their web APIs
or MVC frameworks, and then us-
ing things like Owen. It’s about rec-
ognizing the centralization of the
model that requires you to put all of
your logic in one place. That place
is the ESB, which provides all of the
routing and data transformation re-
quired to get your applications talk-
ing to each other.

Is the “smart endpoint and dumb
network” a reference to the Unix
model?
It could be read like that. The rea-
son we chose that name was more
around the enterprise service bus
(ESB) model. Inside Thoughtworks,
for as long as I can remember, there’s
been a tendency to distrust heavy
iron when it comes to integration.

Big ESB products make a lot
of promises about solving all your
problems. I have seen a lot of imple-
mentations of “service-oriented ar-
chitecture” with everything hanging
off a big central ESB. I have never
seen one of those succeed. It’s about
recognizing the centralization of the
model that requires you to put all of
your logic in one place. That place is
the ESB, which provides of all of the
routing and data transformation re-
quired to get your applications talk-
ing to each other.

Continued from p. 116

s1sen.indd 113 12/9/14 3:07 PM

SOFTWARE ENGINEERING

114 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Relying on one of these things
to solve all your problems is, in
my mind, not the right approach.
There’s a great talk by Jim Weber
and Martin Fowler called “Does
My Bus Look Big in This?,” which
they did as a keynote at QCon
some years ago. Jim talked about
the idea of the spaghetti box: the
ESB as the panacea for all your ills.
His line on that is it makes your di-
agrams look nice. You look at your
enterprise architecture [diagrams],
and they’ve got all these cross-
ing ugly lines It’s really tempting
to put the ESB box in the middle
because suddenly all your lines
are straight. That’s a great thing if
you’re an architect.

But of course all the lines are still

there. They’re just in the middle of
a spaghetti box. It still looks like a
spaghetti box.

But when all the routing isn’t done
by the ESB, who does the routing?
Do I need to do the routing?
You certainly need to understand
more about how your applications
communicate with one another. If
you’re building more services you end
up with more integration problems.
In the past, you might have been un-
lucky to talk to three external sys-
tems. Now you have to be cognizant
of integration problems when you
talk to your own systems. And there
are ways to do that. Event-driven ap-
plications (with either publish-and-
subscribe messaging, or HTTP and

resource representation) allow you
to decouple compared to using point-
to-point RPC the whole time.

Isn’t that a bit like moving the
complexity from the monolith into
the networking layer?
The short answer to that is yes. Ac-
tually, when I originally talked to
people about this, one of the great
comments I got back, from Martin
Fowler, was that we’re shifting the
accidental complexity (in the sense
that Fred Brooks used the term)
from inside our application in glue
code in our components and mod-
ules within our application out into
infrastructure.

This is one of the reasons that
now is a good time for this because
we have many more ways to manage
that complexity: programmable in-
frastructure, infrastructure automa-
tion, the movement to the cloud, the
cloud being ubiquitous. Those sorts
of problems, the problems of under-
standing how many applications we
have, how they’re talking to one an-
other—we have better tools to ad-
dress those things now.

You mentioned domain-driven de-
sign in the beginning. Is microser-
vices domain-driven design with a
“service” label?
Microservices is the coming together
of a bunch of better practices from
a number of different communi-
ties. It is a combination of great
stuff from the domain-driven-design
community around strategic design,
bounded context, subdomains, how
to separate out your domains, and
how to partition a very big problem
domain into smaller domains so that
you can manage them. It’s also tak-
ing a bunch of the better practices
from operational automation and
programmable infrastructure, de-

SOFTWARE ENGINEERING RADIO

Visit www.se-radio.net to listen to these and other insightful hour-long
podcasts.

RECENT EPISODES
• 213—James Lewis sits down with Johannes Thönes to explain the

microservices architectural pattern, the forces driving it, the costs and
benefits, and the organizational impact.

• 214—Grant Ingersoll, founder and CTO of LucidWorks, talks with Tobias
Kaatz about his book Taming Text: How to Find, Organize, and Manipulate It.

• 215—The three living authors of Design Patterns: Elements of Reusable
Object-Oriented Software, with Johannes Thönes, offer a 20-year retro-
spective on the writing of the book and its subsequent impact on design
in software engineering.

UPCOMING EPISODES
• 216—Former Netflix architect Adrian Cockroft talks with Stefan Tilkov

about the modern cloud-based platform, Netflix’s move to the cloud, and
microservices.

• 217—James Turnbull talks with Charles Anderson about the open source
container Docker, containers versus virtual machines, and the implica-
tions for system administrators.

s1sen.indd 114 12/9/14 3:07 PM

SOFTWARE ENGINEERING

JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 115

velopment operations communities,
cloud communities, and the integra-
tion communities.

You’ve been working hard to make
people aware they can solve in-
tegration problems using just
the tooling available for free that
drives the Web, without having to
invest in big iron.
From the domain-driven-design
community, the way you do “archi-
tecture” has to be driven from the
business in the business context. You
have to understand what the busi-
ness problems are, what the busi-
ness landscape looks like, and what
the business processes are, and then
drive a software product underneath
that. For me, that’s the heart of
domain- driven design.

One of my colleagues uses the
great phrase “business and architec-
ture isomorphism.” This is the idea
that your business and the design of
your systems should be very simi-
lar. When you look at your business,
you should see your IT systems and
look at your architecture and see
your business. If you’re a technolo-

gist or business person, there should
be recognition both ways that this is
going on.

How big are these services?
That’s something we’ve been talking
about internally for quite a while.
I’ve seen them ranging from a couple
of hundred lines of code up to a cou-
ple of thousand lines of code. The
guidance I’ve been giving people is it
does one thing and one thing only.
It’s dif� cult to imagine a million
lines of code doing one thing and
one thing only. The guidance is you
should be able to understand them.
They should have a single reason to
change, and they probably shouldn’t
be more than a couple thousand
lines of code.

When you get to that point, the
number becomes important. It’s prob-
ably more important to think about
how many of them you’re capable of
supporting operationally than it is to
think about how small they actually
are because it’s better to have slightly
bigger ones and fewer of them if you
don’t have fully automated deploy-
ment into production.

JOHANNES THÖNES is a developer and
consultant for ThoughtWorks. Contact him at
johannes.thoenes@gmail.com.

IEEE Software (ISSN 0740-7459) is published bimonthly by the
IEEE Computer Society. IEEE headquarters: Three Park Ave., 17th
Floor, New York, NY 10016-5997. IEEE Computer Society Publica-
tions Of� ce: 10662 Los Vaqueros Cir., Los Alamitos, CA 90720; +1
714 821 8380; fax +1 714 821 4010. IEEE Computer Society head-
quarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscribe to
IEEE Software by visiting www.computer.org/software.

Postmaster: Send undelivered copies and address changes to IEEE
Software, Membership Processing Dept., IEEE Service Center, 445
Hoes Lane, Piscataway, NJ 08854-4141. Periodicals Postage Paid
at New York, NY, and at additional mailing of� ces. Canadian GST
#125634188. Canada Post Publications Mail Agreement Number
40013885. Return undeliverable Canadian addresses to PO Box 122,
Niagara Falls, ON L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use
of this material is permitted without fee, provided such use: 1) is
not made for pro� t; 2) includes this notice and a full citation to the
original work on the � rst page of the copy; and 3) does not imply
IEEE endorsement of any third-party products or services. Authors

and their companies are permitted to post the accepted version of
IEEE-copyrighted material on their own webservers without permis-
sion, provided that the IEEE copyright notice and a full citation to
the original work appear on the � rst screen of the posted copy. An
accepted manuscript is a version which has been revised by the au-
thor to incorporate review suggestions, but not the published version
with copyediting, proofreading, and formatting added by IEEE. For
more information, please go to: http://www.ieee.org/publications_
standards/publications/rights/paperversionpolicy.html. Permission to
reprint/republish this material for commercial, advertising, or pro-
motional purposes or for creating new collective works for resale or
redistribution must be obtained from IEEE by writing to the IEEE
Intellectual Property Rights Of� ce, 445 Hoes Lane, Piscataway, NJ
08854-4141 or pubs-permissions@ieee.org. Copyright © 2015 IEEE.
All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to
the source. Libraries are permitted to photocopy for private use of
patrons, provided the per-copy fee indicated in the code at the bottom
of the � rst page is paid through the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923.

NEXT ISSUE:

March/April 2015

Release
Engineering

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

s1sen.indd 115 12/9/14 3:07 PM

