
Software Archaeology
and Anthropology

17-313 Fall 2024
Foundations of Software Engineering

https://cmu-17313q.github.io
Eduardo Feo Flushing

https://cmu-17313q.github.io/

•Slack

• Please add a profile picture.

• Ask questions in #general or #technical-questions.

• Please use threads.

• Use the search tool

•Office hours can be found on the course home page:
http://cmu-17313q.github.io

2

Administrivia

http://cmu-17313q.github.io/

Smoking Section

•Last two rows

3

Team Formation Survey due Thursday

• Form groups based on schedule availability.
• This is ridiculously important.
• Identify experience and working styles.
• Participation point

• Google Form, posted on slack

Project P1

•P1A: Checkpoint due next Sunday (September 1st)
• Only 5% of total P1 points – meant to ensure you start on

time
•P1B: Due Thursday next week, September 5th)
• Refactor a javascript file to improve its quality
• It will be posted tomorrow
• Start early

Context: big old pile of code

•… do something with it!

9

You will never
understand the
entire system!

10

Challenge: How do I tackle this codebase?

Challenge: How do I tackle this codebase?

•Leverage your previous experiences (languages,
technologies, patterns)
•Consult documentation, whitepapers
•Talk to experts, code owners
•Follow best practices to build a working model of the system

12

Bad news: There are few helpful resources!

•Working Effectively with Legacy
Code.
Michael C. Feathers. 2004.
•Re-Engineering Legacy
Software.
Chris Birchall. 2016.
•The Legacy Code Programmer's
Toolbox.
Jonathan Boccara. 2019.

13

Why? Because of Tacit Knowledge

14

Today: How to tackle codebases

•Goal: develop and test a working model or set
of working hypotheses about how (some part
of) a system works
•Working model: an understanding of the
pieces of the system (components), and the
way they interact (connections)
•Focus: Observation, probes, and hypothesis
testing
• Helpful tools and techniques!

15

Live Demonstration: tldraw

https://github.com/tldraw/tldraw

16

https://github.com/tldraw/tldraw

Steps to Understand a New Codebase
• Look at README.md
•Clone the repo.
•Build the codebase.
• Figure out how to make it run.
•What do you want to mess with?

• Clone and own
• Traceability - Attach a debugger

• View Source
• Find the logs.
• Search for constants (strings, colors, weird integers (#DEADBEEF))

Participation Activity

•Take out a piece of paper.
•Write down one pro and one con about trying to understand
a new codebase by compiling and building it vs. just reading
the code.
•Pair with your neighbor and discuss your answers. Do you
agree?
•Share with the class!
• Write your own andrewID on the paper, leave it at the end of

class.

Observation: Software is full of patterns

•File structure
•System architecture
•Code structure
•Names
•…

19

Observation: Software is massively
redundant
•There’s always something to
copy/use as a starting point!

20

Observation: Code must run to do stuff!

21

Observation: If code runs, it must have
a beginning…

22

The Beginning: Entry Points

•Locally installed programs: run cmd, OS launch, I/O events,
etc.

•Web apps server-side: Browser sends HTTP request
(GET/POST)

•Web apps client-side: Browser runs JavaScript, event handlers

23

Can running code be
Probed/Understood/Edited?

24

Transparent OpaqueTranslucent

Source code built locally Server-side apps running remotelyBinaries running locally

Open source Closed source Open source Closed source

(P+U) (P) (U) (Talk to NSA)(P+U+E)

Creating a model of
unfamiliar code

25

Source code built
locally

Static
Information
Gathering

Dynamic
Information
Gathering

Static Information Gathering
• Basic needs:

• Code/file search and navigation
• Code editing (probes)
• Execution of code, tests
• Observation of output (observation)

• Many choices here on tools! Depends on circumstance.
• grep/find/etc. Knowing Unix tools is invaluable
• A decent IDE
• Debugger
• Test frameworks + coverage reports
• Google (or your favorite web search engine)
• ChatGPT or LaMA

27

Static Information Gathering: Use an IDE!
Real software is too complex to keep in your head

28

Dependency maps

Consider documentation and tutorials
judiciously
• Great for discovering entry points!

• Can teach you about general
structure, architecture (more on this
later in the semester)

• Often out of date.

• As you gain experience, you will
recognize more of these, and you will
immediately know something about
how the program works

• Also: discussion boards; issue
trackers

31

Discussion Boards and Issue Trackers

Dynamic Information Gathering
Change helps to inform and refine mental models

•Build it.
•Run it.
•Change it.
•Run it again.
•How did the behavior change?

33

How to start?

•Confirm that you can build and run the code.
• Ideally both using the tests provided, and by hand.

•Confirm that the code you are running is the code you
built!
•Confirm that you can make an externally visible change
•How? Where? Starting points:

• Run an existing test, change it
• Write a new test
• Change the code, write or rerun a test that should notice the

change
•Ask someone for help

34

Probes: Observe, control or “lightly”
manipulate execution

•print(“this code is running!”)

•Structured logging
•Debuggers

• Breakpoint, eval, step through / step
over

• (Some tools even support remote
debugging)

•Delete debugging
•Chrome Developer Tools

35

Runtime code analysis tools

•Collect runtime traces and visualize them
• Flame graphs
• Sequence diagrams

•Use judiciously

Tip: Find a particular thing and trace
the action backward

E.g.,
Where do categories come from?
How are they stored?
How are they rendered?

Let’s try some of these techniques again…

38

https://github.com/tldraw/tldraw

https://github.com/tldraw/tldraw

Remember…

•Reading and understanding code is one of the most important
skills you should learn
• It’s common to get stuck or feel overwhelmed. Don’t give up!
•Consider yourself lucky! Things are much easier today

Learning Goals

•Understand and scope the task of taking on and
understanding a new and complex piece of existing software
•Appreciate the importance of configuring an effective IDE
•Contrast different types of code execution environments
including local, remote, application, and libraries
•Enumerate both static and dynamic strategies for
understanding and modifying a new codebase

40

