
Lecture 2: Metrics and
Measurement

17-313: Foundations of Software Engineering
Fall 2023

1

Administrivia

● Slack
○ Add profile picture (if you want).
○ Ask questions in #general or #project-one. Use threads.

● Homework 1 is released. It is due Wed Aug 30, 11:59 pm (one week!)
○ This is an individual assignment
○ Get started early, ask for help, and check the #project-one channel; chances are decent your questions have been asked by

others! Office hours are running

● Complete the team formation survey today!
● Reading for next Sunday will be posted on the website

○ Gradescope quiz due before class.

2

3

Learning Goals

Use measurements as a
decision tool to reduce
uncertainty

Understand difficulty of
measurement; discuss
validity of measurements

Provide examples of
metrics for software
qualities and process

Understand limitations
and dangers of decisions
and incentives based on
measurements

Software Engineering: Principles, practices
(technical and non-technical) for confidently
building high-quality software.

4

What does this mean?
How do we know?
 Measurement and

metrics are key
concerns.

Outline

● Case Study: AV Vehicles
● Definitions: Measurements and Metrics

○ Examples: Code Complexity
○ Measurement scales

● Why measure?
● Risks and challenges
● Measures and incentives

5

Case study: Autonomous Vehicles

6

AV Software is ________________________

7

How can we judge AV software quality (e.g. safety)?

8

Test coverage

● Amount of code executed during
testing.

● Statement coverage, line coverage,
branch coverage, etc.

● E.g., 75% branch coverage 3/4 if-else
outcomes have been executed

9

Model Accuracy

● Train machine-learning
models on labelled data
(sensor data + ground
truth).

● Compute accuracy on a
separate labelled test set.

● E.g., 90% accuracy implies
that object recognition is
right for 90% of the test
inputs.

1
0

Source: Peng et al. ESEC/FSE’20

Failure Rate

● Frequency of
crashes/fatalities

● Per 1000 rides, per million
miles, per month (in the
news)

1
1

Mileage

12
Source: waymo.com/safety (September 2021)

Think of “pros” and “cons” for using various metrics to judge AV software.

● Group discussion, 5 minutes

● Write down two pros and two cons for three metrics on a piece of paper

● Write down your Andrew IDs.

● Keep the paper. You must hand in the paper at the end of the lecture.

Activity

Test coverage Age of codebase

Model accuracy Time of most recent change

Failure rate Frequency of code releases

Size of codebase Amount of code documentation

Mileage Number of contributors

Outline

● Case Study: AV Vehicles
 Definitions: Measurements and Metrics

○ Examples: Code Complexity
○ Measurement scales

● Why measure?
● Risks and challenges
● Measures and incentives

1
4

MEASUREMENT AND METRICS

1
5

● Measurement is the empirical, objective assignment of numbers,
according to a rule derived from a model or theory, to attributes of
objects or events with the intent of describing them. – Craner, Bond,
“Software Engineering Metrics: What Do They Measure and How Do We
Know?”

● A quantitatively expressed reduction of uncertainty based on one or
more observations. – Hubbard, “How to Measure Anything …”

1
6

What is Measurement?

● IEEE 1061 definition: “A software quality metric is a function whose
inputs are software data and whose output is a single numerical
value that can be interpreted as the degree to which the software
possesses a given attribute that affects its quality.”

● Metrics have been proposed for many quality attributes; may define own
metrics

1
7

Software Quality Metrics

What software qualities do we care about?
(examples)
● Scalability
● Security
● Extensibility
● Documentation
● Performance
● Consistency
● Portability

● Installability
● Maintainability
● Functionality (e.g., data

integrity)
● Availability
● Ease of use

1
8

What process qualities do we care about?
(examples)
● On-time release
● Development speed
● Meeting efficiency
● Conformance to processes
● Time spent on rework
● Reliability of predictions
● Fairness in decision

making

● Measure time, costs,
actions, resources, and
quality of work packages;
compare with predictions

● Use information from issue
trackers, communication
networks, team structures,
etc…

1
9

● If X is something we care about, then X, by definition, must be detectable.
○ How could we care about things like “quality,” “risk,” “security,” or “public image” if these things were totally

undetectable, directly or indirectly?

○ If we have reason to care about some unknown quantity, it is because we think it corresponds to desirable or
undesirable results in some way.

● If X is detectable, then it must be detectable in some amount.
○ If you can observe a thing at all, you can observe more of it or less of it

● If we can observe it in some amount, then it must be measurable.

2
0

Everything is measurable

Douglas Hubbard, How to Measure Anything, 2010

EXAMPLES:
CODE COMPLEXITY

2
3

● Easy to measure

2
4

Lines of Code
> wc –l file1 file2…

LOC projects
450 Expression Evaluator

2,000 Sudoku
100,000 Apache Maven
500,000 Git

3,000,000 MySQL
15,000,000 gcc
50,000.000 Windows 10

2,000,000,000 Google (MonoRepo)

● Ignore comments and empty lines
● Ignore lines < 2 characters
● Pretty print source code first
● Count statements (logical lines of code)
● See also: cloc

2
5

Normalizing Lines of Code

for (i = 0; i < 100; i += 1) printf("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
 i = 0;
 i < 100;
 i += 1
) {
 printf("hello");
}

Language Statement factor
(productivity)

Line factor

C 1 1
C++ 2.5 1
Fortran 2 0.8
Java 2.5 1.5
Perl 6 6
Smalltalk 6 6.25
Python 6 6.5

2
6

Normalization per Language

Source: “Code Complete: A Practical Handbook of Software Construction“, S. McConnell, Microsoft Press (2004)
and http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html u.a.

http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html

● Introduced by Maurice Howard Halstead in 1977
● Halstead Volume =

 number of operators/operands *
 log2(number of distinct operators/operands)

● Approximates size of elements and vocabulary

2
7

Halstead Volume

● main() {
 int a, b, c, avg;
 scanf("%d %d %d", &a, &b, &c);
 avg = (a + b + c) / 3;
 printf("avg = %d", avg);
}

2
8

Halstead Volume - Example

Operators/Operands: main, (), {}, int, a, b, c, avg,
scanf, (), "…", &, a, &, b, &, c, avg, =, a, +, b, +, c,

(), /, 3, printf, (), "…", avg

● Proposed by McCabe 1976
● Based on control flow graph, measures

linearly independent paths through a
program
○ ~= number of decisions

○ Number of test cases needed to achieve branch coverage

2
9

Cyclomatic Complexity
if (c1) {

f1();
} else {

f2();
}
if (c2) {

f3();
} else {

f4();
}

M = edges of CFG – nodes of CFG + 2*connected components

“For each module, either limit cyclomatic complexity to [X] or
provide a written explanation of why the limit was exceeded.”

– NIST Structured Testing methodology

● Number of Methods per Class
● Depth of Inheritance Tree
● Number of Child Classes
● Coupling between Object Classes
● Calls to Methods in Unrelated Classes
● …

3
0

Object-Oriented Metrics

Measurement scales

3
1

● Scale: the type of data being measured.
● The scale dictates what sorts of analysis/arithmetic is legitimate or

meaningful.
● Your options are:

○ Nominal: categories

○ Ordinal: order, but no magnitude.

○ Interval: order, magnitude, but no zero.

○ Ratio: Order, magnitude, and zero.

3
2

Measurement scales: why they are important

3
3

Measurement scales: what you can do

Outline

● Case Study: AV Vehicles
● Definitions: Measurements and Metrics

○ Examples: Code Complexity
○ Measurement scales

 Why measure?
● Risks and challenges
● Measures and incentives

3
9

WHY MEASURE?

4
0

● Fund project?
● More testing?
● Fast enough? Secure enough?
● Code quality sufficient?
● Which feature to focus on?
● Developer bonus?
● Time and cost estimation? Predictions reliable?

4
1

Measurement for Decision Making

4
2

Trend analyses

● Monitor many projects or many modules, get typical values for metrics
● Report deviations

4
3

Benchmarking against standards

https://semmle.com/insights/

https://semmle.com/insights/

Antipatterns in effort estimation

● IBM in the 60’s: Would account in
“person-months”
e.g. Team of 2 working 3 months =
6 person-months

● LoC ~ Person-months ~ $$$
● Brooks: “Adding manpower to a late

software project makes it later.”

4
4

Outline

 Case Study: AV Vehicles
 Definitions: Measurements and Metrics

 Examples: Code Complexity
 Measurement scales

 Why measure?
 Risks and challenges
● Measures and incentives

4
5

46

The streetlight effect

● A known observational
bias.

● People tend to look for
something only where it’s
easiest to do so.
○ If you drop your keys at

night, you’ll tend to look for
it under streetlights.

4
7

● Bad statistics: A basic misunderstanding of
measurement theory and what is being
measured.

● Bad decisions: The incorrect use of
measurement data, leading to unintended
side effects.

● Bad incentives: Disregard for the human
factors, or how the cultural change of
taking measurements will affect people.

4
8

Bad metrics: What could possibly go wrong?

To infer causation:
○ Provide a theory (from domain knowledge, independent of data)

○ Show correlation

○ Demonstrate ability to predict new cases (replicate/validate)

4
9

Making inferences http://xkcd.com/552/

Spurious Correlations

5
0

● If you look only at the coffee consumption →
cancer relationship, you can get very misleading
results

● Smoking is a confounder

5
1

Confounding variables

“We found that there is a low to moderate correlation between coverage and
effectiveness when the number of test cases in the suite is controlled for.”

Most studies did not account for the confounding influence of test suite size

5
2

● Construct validity – Are we measuring what we intended to measure?
● Internal validity – The extent to which the measurement can be used to

explain some other characteristic of the entity being measured
● External validity – Concerns the generalization of the findings to contexts

and environments, other than the one studied

5
3

Measurements validity

● Extent to which a measurement yields similar results when applied
multiple times

● Goal is to reduce uncertainty, increase consistency
● Example: Performance

○ Time, memory usage

○ Cache misses, I/O operations, instruction execution count, etc.

● Law of large numbers
○ Taking multiple measurements to reduce error

○ Trade-off with cost

5
5

Measurements reliability

56

● Measure whatever can
be easily measured.

● Disregard that which cannot be measured easily.
● Presume that which cannot be measured easily is not important.
● Presume that which cannot be measured easily does not exist.

5
7

McNamara fallacy

https://chronotopeblog.com/2015/04/04/the-mcnamara-fallacy-and-the-problem-with-
numbers-in-education/

5
8

Survivorship bias

Outline

 Case Study: AV Vehicles
 Definitions: Measurements and Metrics

 Examples: Code Complexity
 Measurement scales

 Why measure?
 Risks and challenges
 Measures and incentives

6
2

http://dilbert.com/strips/comic/1995-11-13/

Goodhart’s law: “When a measure becomes a target,
it ceases to be a good measure.”

6
3

6
4

● Lines of code per day?
○ Industry average 10-50 lines/day

○ Debugging + rework ca. 50% of time

● Function/object/application points per month
● Bugs fixed?
● Milestones reached?

6
5

Productivity Metrics

● What happens when developer bonuses are based on
○ Lines of code per day?

○ Amount of documentation written?

○ Low number of reported bugs in their code?

○ Low number of open bugs in their code?

○ High number of fixed bugs?

○ Accuracy of time estimates?

6
6

Incentivizing Productivity

● Measurement is difficult but important for decision making
● Software metrics are easy to measure but hard to interpret, validity often

not established
● Many metrics exist, often composed; pick or design suitable metrics if

needed
● Careful in use: monitoring vs incentives
● Strategies beyond metrics

6
8

Summary

69

What you need to know

Use measurements as a
decision tool to reduce
uncertainty

Understand difficulty of
measurement; discuss
validity of measurements

Provide examples of
metrics for software
qualities and process

Understand limitations
and dangers of decisions
and incentives based on
measurements

● What properties do we care about, and how do we measure it?
● What is being measured? Does it (to what degree) capture the thing you

care about? What are its limitations?
● How should it be incorporated into process?
● What are potentially negative side effects or incentives?

7
0

Questions to consider (HW1)

	Lecture 2: Metrics and Measurement
	Administrivia
	Learning Goals
	Software Engineering: Principles, practices (technical and non-technical) for confidently building high-quality software.
	Outline
	Case study: Autonomous Vehicles
	AV Software is ________________________
	How can we judge AV software quality (e.g. safety)?
	Test coverage
	Model Accuracy
	Failure Rate
	Mileage
	Activity
	Outline
	Measurement and Metrics
	What is Measurement?
	Software Quality Metrics
	What software qualities do we care about? (examples)
	What process qualities do we care about? (examples)
	Everything is measurable
	Examples:�Code Complexity
	Lines of Code
	Normalizing Lines of Code
	Normalization per Language
	Halstead Volume
	Halstead Volume - Example
	Cyclomatic Complexity
	Object-Oriented Metrics
	Measurement scales
	Measurement scales: why they are important
	Measurement scales: what you can do
	Outline
	WHY MEASURE?
	Measurement for Decision Making
	Trend analyses
	Benchmarking against standards
	Antipatterns in effort estimation
	Outline
	Slide Number 46
	The streetlight effect
	Bad metrics: What could possibly go wrong?
	Making inferences
	Spurious Correlations
	Confounding variables
	Slide Number 52
	Measurements validity
	Measurements reliability
	Slide Number 56
	McNamara fallacy
	Survivorship bias
	Outline
	Goodhart’s law: “When a measure becomes a target, it ceases to be a good measure.”
	Slide Number 64
	Productivity Metrics
	Incentivizing Productivity
	Summary
	What you need to know
	Questions to consider (HW1)

