
Project 2

• Example “feature themes”
• I want to mark questions as resolved,
• Allow instructors to endorse posts
• Mark as duplicate
• Search for topics
• Tagging based on user type, predefined label, etc.

• Others
• Auto-disappearing posts
• Poll posts

Software Archaeology
and Anthropology

17-313 Fall 2023
Foundations of Software Engineering

Learning Goals

• Understand and scope the task of taking on and
understanding a new and complex piece of existing software

• Appreciate the importance of configuring an effective IDE
• Contrast different types of code execution environments

including local, remote, application, and libraries
• Enumerate both static and dynamic strategies for

understanding and modifying a new codebase
5

Context: big old pile of code

• … do something with it!

6

You will never
understand the
entire system!

7

Challenge: How do I tackle this
codebase?

8

Challenge: How do I tackle this codebase?

• Leverage your previous experiences (languages,
technologies, patterns)

• Consult documentation, whitepapers
• Talk to experts, code owners
• Follow best practices to build a working model of the system

9

Today: How to tackle codebases

• Goal: develop and test a working model or set
of working hypotheses about how (some part
of) a system works

• Working model: an understanding of the
pieces of the system (components), and the
way they interact (connections)

• Focus: Observation, probes, and hypothesis
testing

• Helpful tools and techniques!

12

Live Demonstration: NodeBB

13

Steps to Understand a New Codebase

• Look at README.md
• Clone the repo.
• Build the codebase.
• Figure out how to make it run.
• What do you want to mess with?

• Clone and own
• Traceability - Attach a debugger

• View Source
• Find the logs.
• Search for constants (strings, colors, weird integers (#DEADBEEF))

Participation Activity

• Take out a piece of paper.
• Write down one pro and one con about trying to understand

a new codebase by compiling and building it vs. just reading
the code.

• Pair with your neighbor and discuss your answers. Do you
agree?

• Share with the class!
• Submit it by the end of class.

Observation: Software is full of patterns

• File structure
• System architecture
• Code structure
• Names
• …

16

Observation: Software is massively
redundant
• There’s always something to

copy/use as a starting point!

17

Observation: If code runs, it must have
a beginning…

19

Observation: If code runs, it must exist…

20

The Beginning: Entry Points

• Locally installed programs: run cmd, OS launch, I/O events,
etc.

• Local applications in dev: build + run, test, deploy (e.g., docker)

• Web apps server-side: Browser sends HTTP request
(GET/POST)

• Web apps client-side: Browser runs JavaScript, event handlers

Creating a model of
unfamiliar code

24

Source code built
locally

Static
Information
Gathering

Dynamic
Information
Gathering

Static Information Gathering

• Basic needs:
• Code/file search and navigation
• Code editing (probes)
• Execution of code, tests
• Observation of output (observation)

• Many choices here on tools! Depends on circumstance.
• grep/find/etc. Knowing Unix tools is invaluable
• A decent IDE
• Debugger
• Test frameworks + coverage reports
• Google (or your favorite web search engine)
• ChatGPT or LaMA

At the command line: grep and find!
(Google for tutorials)

Static Information Gathering: Use an IDE!
Real software is too complex to keep in your head

27

Dependency maps
StringIO

pprint

pydeps.
render_context

shlex

pydeps.
py2depgraph

pydeps.
depgraph

pydeps.pydeps

getopt

pydeps.
depgraph2dotpydeps.mf27

pydeps.colors

collections

argparse

pydeps.dot

fnmatch

contextlibtextwrap

struct dissubprocess

colorsys

Consider documentation and tutorials judiciously

• Great for discovering entry points!

• Can teach you about general
structure, architecture (more on this
later in the semester)

• Often out of date.

• As you gain experience, you will
recognize more of these, and you
will immediately know something
about how the program works

• Also: discussion boards; issue
trackers

30

Discussion Boards and Issue Trackers

Dynamic Information Gathering
Change helps to inform and refine mental models

• Build it.
• Run it.
• Change it.
• Run it again.
• How did the behavior change?

32

How to start?

• Confirm that you can build and run the code.
• Ideally both using the tests provided, and by hand.

• Confirm that the code you are running is the code you built!
• Confirm that you can make an externally visible change
• How? Where? Starting points:

• Run an existing test, change it
• Write a new test
• Change the code, write or rerun a test that should notice the change

• Ask someone for help

Probes: Observe, control or “lightly”
manipulate execution

• print(“this code is running!”)
• Structured logging
• Debuggers

• Breakpoint, eval, step through / step
over

• (Some tools even support remote
debugging)

• Delete debugging
• Chrome Developer Tools

Runtime code analysis tools

• Collect runtime traces and visualize them
• Flame graphs
• Sequence diagrams

• Use judiciously

Tip: Find a particular thing and trace
the action backward

E.g.,
Where do categories come from?
How are they stored?
How are they rendered?

Remember…

• Reading and understanding code is one of the most important
skills you should learn

• It’s common to get stuck or feel overwhelmed. Don’t give up!
• You are lucky! There are many tools available today

Learning Goals

• Understand and scope the task of taking on and
understanding a new and complex piece of existing software

• Appreciate the importance of configuring an effective IDE
• Contrast different types of code execution environments

including local, remote, application, and libraries
• Enumerate both static and dynamic strategies for

understanding and modifying a new codebase
38

Tip: Document and share your findings!

• Update README and docs
• Or better: use a Developer Wiki
• Use Mermaid for diagrams

• Collaborate with others
• Include negative results, too!

40

https://mermaid.js.org/

	Project 2
	Software Archaeology and Anthropology
	Learning Goals
	Context: big old pile of code
	You will never understand the entire system!
	Challenge: How do I tackle this codebase?
	Challenge: How do I tackle this codebase?
	Today: How to tackle codebases
	Live Demonstration: NodeBB
	Steps to Understand a New Codebase
	Participation Activity
	Observation: Software is full of patterns
	Observation: Software is massively redundant
	Observation: If code runs, it must have a beginning…
	Observation: If code runs, it must exist…
	The Beginning: Entry Points
	Creating a model of unfamiliar code
	Slide Number 25
	Static Information Gathering
	Static Information Gathering: Use an IDE!�Real software is too complex to keep in your head
	Dependency maps
	Consider documentation and tutorials judiciously
	Discussion Boards and Issue Trackers
	Dynamic Information Gathering�Change helps to inform and refine mental models
	How to start?
	Probes: Observe, control or “lightly” manipulate execution�
	Runtime code analysis tools
	Tip: Find a particular thing and trace the action backward
	Remember…
	Learning Goals
	Tip: Document and share your findings!

