
Introduction to 
Software Architecture

17-313 Fall 2025
Foundations of Software Engineering

https://cmu-17313q.github.io
Eduardo Feo Flushing

https://cmu-17313q.github.io


• P2B due Sunday September 28th, 11:59PM
• Team Surveys due every Sunday, 11:59PM

• “Storming” phase
• Most teams doing well
• Remember: communication, communication, …

Administrivia



Communication
Communication

Communication

Communication

Communication

Communication

You can’t solve any 
problem

without communication!



Conflict Resolution
• Your goal: Find a solution to the problem and move forward.
• Make sure that everybody works from the same set of facts.
• Establish ground rules for your team’s discussion. 

• Talk about how the situation made you feel. Never presume anything about anyone 
else.

• Remain calm and rational. If you feel triggered or threatened, extract 
yourself from the situation, wait an hour to chill out, and then try again.

• If you reach an impasse, talk to your team leader.
• If your team remains in conflict, escalate to your mentor CA.

• Your mentor CA will not solve your problem. They will help you to solve your own 
problems.



Team survey



Smoking Section

•Last two full rows

7



Learning Goals
● Understand the abstraction level of architectural reasoning
● Appreciate how software systems can be viewed at different 

abstraction levels
● Distinguish software architecture from (object-oriented) 

software design
● Explain the importance of architectural decisions
● Integrate architectural decisions into the software development 

process
● Document architectures clearly, without ambiguity



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation



1
1













Abstracted views focus on conveying specific 
information

• They have a well-defined purpose

• Show only necessary information

• Abstract away unnecessary details

• Use legends/annotations to remove ambiguity

• Multiple views of the same object tell a larger story



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation



Case Study: Autonomous Vehicle Software



Apollo Software Architecture

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md



Apollo Hardware Architecture

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md 



Apollo Hardware/Vehicle Overview

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md 



Apollo Perception Module



Apollo ML Models

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex 
Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Conference and 
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063



Apollo Software Stack

Source: https://github.com/ApolloAuto/



Feature Evolution (Software Stack View)

Source: https://github.com/ApolloAuto/apollo



Case Study: Apollo
Check out the “side pass” feature from the video:
https://www.youtube.com/watch?v=BXNDUtNZdM4 

● Which modules or components are involved in enabling the side pass feature?

Other resources:
● Source: https://github.com/ApolloAuto/apollo 
● Doxygen: https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html 

https://www.youtube.com/watch?v=BXNDUtNZdM4
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo-doxygen/index.html


Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development Process
• Common Software Architectures
• Documentation



Software Architecture

“Architecture is about the important stuff. 
Whatever that is.”

Ralph Johnson



Software Architecture

The software architecture of a program or computing system 
is the structure or structures of the system, which 
comprise software elements, the externally visible 
properties of those elements, and the relationships among 
them.

[Bass et al. 2003]

Note: this definition is ambivalent to 
whether the architecture is known or 

whether it’s any good!



Elements of Software Architecture

• Abstraction
• Elements: roles, responsibilities, behaviors, properties
• Relationships between elements
• Relationships to non-software elements

• Hardware, external systems
• Described from many different “external” perspectives

• Hides “internal” details



Software Architecture: Motivation

• Facilitates internal and external communication
• Describes design decisions and prescribes implementation 

constraints
• Relates to organizational structure
• Permits/precludes achieving non-functional 

requirements
• Allows to control complexity, manage change, and to 

(better) estimate effort
Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012



Software Design vs. 
Architecture



Levels of Abstraction

● Requirements
• high-level “what” needs to be done

● Architecture (High-level design)
• high-level “how”, mid-level “what”

● OO-Design (Low-level design, e.g. design patterns)
• mid-level “how”, low-level “what”

● Code
• low-level “how”



Design vs. Architecture
Design Questions
• How do I add a menu item in NodeBB?

• How can I make it easy to create posts in 
NodeBB?

• What lock protects this data?

• How does Google rank pages?

• What encoder should I use for secure 
communication?

• What is the interface between objects?

Architectural Questions
• How do I extend NodeBB with a plugin?

• What threads exist and how do they 
coordinate?

• How does Google scale to billions of hits 
per day?

• Where should I put my firewalls?

• What is the interface between 
subsystems?



Objects

Model



Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command



Design Patterns



Design Patterns



Architecture



Architecture



Architecture



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development 

Process
• Common Software Architectures
• Documentation



• Whether you know it or not
• Whether you like it or not
• Whether it’s documented or not

If you don’t consciously elaborate the 
architecture, it will evolve by itself!

Every software system has an architecture

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

… so don’t complain later



https://www.instagram.com/architectanddesign

ht
tp

s:
//w

w
w

.a
rc

hd
ai

ly.
co

m
/

https://www.mykonosceramica.com/



w
w

w
.over-view

.com



The costs of a wrong architecture



How to make architectural 
decisions
More than one answer



Architectural
Decisions

Non-Functional
Requirements

Technical
Business

Social

Software
Architecture

influences

influences

Architecting Software the SEI Way - Software Architecture Fundamentals: Technical, Business, and Social Influences. Robert Wojcik. 2012

The Ecosystem of Architectural Decisions
Architecture is deeply 

entangled with people, goals, 
and systems



B. Nuseibeh, "Weaving together requirements and architectures". 2001 



“The best architectures, requirements, and designs emerge from self-organizing teams”

Agile and Architecture



The Zipper Model

Elicit architecturally significant user stories in early iterations



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development 

Process
• Common Software Architectures
• Documentation



Common 
Architectural 

Styles

https://www.thespruce.com/top-architectural-styles-4802083



1. Pipes and Filters

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example:
Compilers



2. Object-Oriented Organization

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



3. Event-Driven Architecture



Example: Node.js



4. Blackboard Architecture

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



5. Layered Systems

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021



Example: Internet Protocol Suite



Outline

● Views and Abstraction
● Case Study: Autonomous Vehicles
● Software Architecture

• Definitions, Importance
• Software Design vs. Software Architecture

● Architecting software
• Integrating Architectural Decisions into the SW Development 

Process
• Common Software Architectures
• Documentation



Why Document Architecture?

● Blueprint for the system
• Artifact for early analysis
• Primary carrier of quality attributes
• Key to post-deployment maintenance and enhancement

● Documentation speaks for the architect, today and 20 
years from today

• As long as the system is built, maintained, and evolved 
according to its documented architecture

● Support traceability



https://cdli.mpiwg-berlin.mpg.de/artifacts/125392
Plan or Drawing tablet excavated in Umma (mod. Tell Jokha), dated to the Ur III (ca. 2100-2000 BC) period and now kept in Vorderasiatisches Museum, Berlin, Germany

5000 years old 
floorplan depicted 

on a tablet 
excavated in 

Umma (now Iraq), 
now kept in 

Vorderasiatisches 
Museum, Berlin, 

Germany



The “4+1” view model

 Philippe Kruchten, Architectural Blueprints—The “4+1” View Model of Software Architecture[



Common Views in Documenting Software 
Architecture

• Logical View (End user)
• Functionality
• Subsystems, structures and their relations (dependencies, …)

• Process View (System Integration) 
• Non-functional aspects
• Components (processes, runnable entities) and connectors (messages, data flow, …)

• Development View (Developers)
• Software modularity / decomposition

• Physical View (System Engineer/DevOps)
• Hardware structures and their connections
• Deployment

• Scenarios (All)
• Outline tasks/use cases
• Sequences of interactions between objects and processes



Apollo Software Architecture

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/docs/specs/Apollo_5.5_Software_Architecture.md



Apollo Hardware Architecture

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md 



Apollo Hardware/Vehicle Overview

Source: https://github.com/ApolloAuto/apollo/blob/v6.0.0/README.md 



Apollo Perception Module



Apollo ML Models

Source: Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the Integration of Machine Learning Models in Complex 
Autonomous Driving Systems: A Case Study on Apollo. In Proceedings of the 28th ACM Joint European Software Engineering Conference and 
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), https://doi.org/10.1145/ 3368089.3417063



Apollo Software Stack

Source: https://github.com/ApolloAuto/





Guidelines for selecting a notation
● Suitable for purpose
● Often visual for compact representation
● Usually, boxes and arrows
● UML possible (semi-formal), but possibly constraining

• Note the different abstraction level – Subsystems or 
processes, not classes or objects

● Formal notations available
● Decompose diagrams hierarchically and in views
● Always include a legend
● Define precisely what the boxes mean
● Define precisely what the lines mean
● Do not try to do too much in one diagram

• Each view of architecture should fit on a page
• Use hierarchy



Learning Goals

● Understand the abstraction level of architectural 
reasoning

● Appreciate how software systems can be viewed at 
different abstraction levels

● Distinguish software architecture from (object-oriented) 
software design

● Explain the importance of architectural decisions
● Integrate architectural decisions into the software 

development process
● Document architectures clearly, without ambiguity


