
Software Risk Management
17-313 Fall 2023

Foundations of Software Engineering



Administrivia
● Midterm: Tuesday, October 3
● Participation activity: Teamwork Survey due Thursday 11:59 pm

3



Risk



Definition: Risk

Risk is a measure of the potential inability to achieve overall program
objectives within defined cost, schedule, and technical constraints.

6

Conrow, E. 2003. Effective Risk Management: Some Keys to Success, 2nd ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics (AIAA).



Risk is defined by two key components

The probability (or likelihood) of failing to 
achieve a particular outcome

The consequences (or impact) of 
failing to achieve that outcomes

7

Conrow, E. 2003. Effective Risk Management: Some Keys to Success, 2nd ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics (AIAA).



Internal vs. External Risk

8

Risks that we can control Risks that we cannot control



Levels of Risk Management

1. Crisis management: Fire fighting; address risks only after they have 
become problems.

2. Fix on failure: Detect and react to risks quickly, but only after they have 
occurred.

3. Risk mitigation: Plan ahead of time to provide resources to cover risks if 
they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software 
project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make it 
possible for risks to exist at all.

9

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996



Levels of Risk Management

1. Crisis management: Fire fighting; address risks only after they have 
become problems.

2. Fix on failure: Detect and react to risks quickly, but only after they have 
occurred.

3. Risk mitigation: Plan ahead of time to provide resources to cover risks if 
they occur, but do nothing to eliminate them in the first place.

4. Prevention: Implement and execute a plan as part of the software 
project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that make it 
possible for risks to exist at all.

10

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996



Risk Management Processes

11

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996



Risk Management Processes

12

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996



Team Exercise: Risk Identification

● What risks exist for the development of the scooter app?

13



Risk assessment matrix

● MIL-STD-882E
https://www.system-safety.org/Documents/MIL-STD-882E.pdf



Aviation failure impact categories
● No effect – failure has no impact on safety, aircraft operation, or crew 

workload

● Minor – failure is noticeable, causing passenger inconvenience or flight plan 
change

● Major – failure is significant, causing passenger discomfort and slight 
workload increase

● Hazardous – high workload, serious or fatal injuries

● Catastrophic – loss of critical function to safely fly and land

DO-178b, Software Considerations in Airborne Systems and Equipment Certification, 
RTCA, 1992



Risk Analysis

16

Risk Probability
(%)

Size of Loss
(weeks)

Risk Exposure
(weeks)

Overly optimistic schedule 50% 5 2.5

Additional features added by marketing (specific features unknown) 35% 8 2.8

Project approval takes longer than expected 25% 4 1.0

Management-level progress reporting takes more developer time than expected 10% 1 0.1

New programming tools do not produce the promised savings 30% 5 1.5

... ... ... ...

Total 12

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996



Risk Analysis Estimations

● Size of Loss
○ Use consensus-based approaches

● Probability
○ This is much harder to estimate!
○ Use a group-consensus approach (e.g., Planning Poker)
○ Use adjective calibration: Label each risk as “Very likely”, “Likely”, “Somewhat 

likely”, “Unlikely”, then convert labels into approximate quantitative values.

17



Exercise: Risk Analysis

● What is the risk severity for the development of the scooter app?

18



Risk Prioritization
Focus on risks with the highest exposure

19



Risk Management Processes

20

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996



Risk Management Processes

21

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996



Risk Control

● What steps can be taken to avoid or mitigate the risk?
● Can you better understand and forecast the risk?
● Who will be responsible for monitoring and addressing the risk?
● Have risks evolved over time?
● Bake risks into your schedule

○ Don’t assume that nothing will go wrong between now and the end of the semester! 

22



Discussion: Risk Elimination and Mitigation

● How can you eliminate/mitigate risk for the scooter app?

24



The Swiss cheese model
Regulatory 
narrowness

Incomplete 
procedures

Mixed 
messages

Production 
pressures

Responsibility
shifting

Inadequate 
training

Attention 
distractions

Deferred 
maintenance

Clumsy 
technology

Institutional

Organization
Profession

& Team Individual

Technical

Modified from Reason, 1999, by R.I. Crook



OODA Loop

By Patrick Edwin Moran - Own work, CC BY 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3904554



Pre-mortems
● "unlike a typical critiquing session, in which project team members are asked 

what might go wrong, the premortem operates on the assumption that the 
'patient' has died, and so asks what did go wrong."



What are things that can 
go wrong?

28



Can we remove human 
error?

29



Generalization

● …in the words of psychologist Tom Stafford, we can’t find our typos because 

we’re engaging in a high-level task in writing. Our brains 
generalize simple, component parts to 
focus on complex tasks, so essentially we can’t catch the 
small details because we’re focused on a large task.

30

https://medium.com/swlh/why-we-miss-our-own-typos-96ab2f06afb7



Can we remove human 
error?
Can we catch human error before we ship our code?
Can we automate tasks to prevent problems?

31

catch



32

[State of Code Review 2017]



CI/CD Pipeline overview

37

Code Edit Tests Run

Code MergedCode 
Deployed



Continuous Integration:

Catch mistakes before you push your code!

40



History of CI

41

(1999) Extreme Programming (XP) rule: “Integrate Often”

(2000) Martin Fowler posts “Continuous Integration” blog

(2001) First CI tool

(2005) Hudson/Jenkins

(2011) Travis CI 

(2019) GitHub Actions 



Sample CI Workflow

Create Pull Request
GitHub tells Travis CI build is 
mergeable
It builds and passes tests
Travis updates PR 
PR is merged

42



Example CI/CD Pipeline

43



CI Research

44

“523 complete responses, and a total of 691 survey responses from over 30 countries. Over 50% of our participants had 
over 10 years of software development experience, and over 80% had over 4 years of experience.”



Developers say:

CI helps us catch bugs earlier
CI makes us less worried about breaking our builds
CI lets us spend less time debugging

“[CI] does have a pretty big impact on [catching bugs]. It allows us to find 
issues even before they get into our main repo, ... rather than letting bugs go 
unnoticed, for months, and letting users catch them.”

45



Developers report:

Do developers on projects with CI give (more/similar/less) value to automated 
tests?

46



Developers report:
Do developers on projects with CI give (more/similar/less) value to automated 
tests?
Do projects with CI have (higher/similar/lower) test quality? 

47



Developers report:
Do developers on projects with CI give (more/similar/less) value to automated 
tests?
Do projects with CI have (higher/similar/lower) test quality? 
Do projects with CI have (higher/similar/lower) code quality?

48



Developers report:
Do developers on projects with CI give (more/similar/less) value to automated 
tests?
Do projects with CI have (higher/similar/lower) test quality? 
Do projects with CI have (higher/similar/lower) code quality?
Are developers on projects with CI (more/similar/less) productive?

49



Challenge: Flaky Tests

50

“Google has around 4.2 million tests that run on our 
continuous integration system. Of these, around 63 
thousand have a flaky run over the course of a week”

https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html



Observation
CI helps us catch errors 
before others see them

51



Learning Goals

● Learn to discuss risk in a project
● Strategize about ways to mitigate risk
● Learn to get early feedback to reduce risk
● Find ways to catch our technical errors

52


	Software Risk Management
	Administrivia
	Risk
	Definition: Risk
	Risk is defined by two key components
	Internal vs. External Risk
	Levels of Risk Management
	Levels of Risk Management
	Risk Management Processes
	Risk Management Processes
	Team Exercise: Risk Identification
	Risk assessment matrix
	Aviation failure impact categories
	Risk Analysis
	Risk Analysis Estimations
	Exercise: Risk Analysis
	Risk Prioritization�Focus on risks with the highest exposure
	Risk Management Processes
	Risk Management Processes
	Risk Control
	Discussion: Risk Elimination and Mitigation
	The Swiss cheese model
	OODA Loop
	Pre-mortems
	What are things that can go wrong?
	Can we remove human error?
	Generalization
	Can we remove human error?
	Slide Number 32
	CI/CD Pipeline overview
	Continuous Integration:
	History of CI
	Sample CI Workflow
	Example CI/CD Pipeline
	CI Research
	Developers say:
	Developers report:
	Developers report:
	Developers report:
	Developers report:
	Challenge: Flaky Tests
	Observation
	Learning Goals

