
Architecture:
Microservices

17-313 Fall 2025
Foundations of Software Engineering

https://cmu-17313q.github.io
Eduardo Feo Flushing

https://cmu-17313q.github.io/

Learning Goals
• Contrast the monolithic application design with a modular

design based on microservices.
• Reason about tradeoffs of microservices architectures.
• Principles of microservices: how to benefit and avoid their

pitfalls

Outline

● From Monoliths to Service Oriented Architecture
• Case Study: Chrome Web Browser

● Microservices
• Monolith vs Microservices
• Advantages
• Challenges

● Microservices: Principles
● Serverless

Before we get to
microservices…

MONOLITHS

Monolithic Modular

Monolithic styles

Source: https://www.seobility.net (CC BY-SA 4.0)

Modularity comes in many ways
• Plug-in architectures

• Distinct code repositories, joined to a monolithic run-time
• Examples: Linux kernel modules, NodeBB themes, VS Code extensions
• Separates development, but runs as “one”

Core System Plugin
API

Plugin 1

Plugin 2

Plugin 3

Modularity comes in many ways

• Plug-in architectures
• Service-oriented architectures

• Distinct processes communicating via messages (e.g., Web
browsers)

• Separates run-time resource management and failure / security
issues.

• Distributed microservices
• Independent, autonomous services communicating via web APIs
• Separates almost all concerns

SERVICE-ORIENTED ARCHITECTURE
Separation of concerns

Monolithic Service-oriented

Example: Chrome

Web Browsers

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

The evolution of browser architectures

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Service-oriented browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Implementation:
Multi-process browser with IPC

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Benefits of a service-oriented browser
architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Navigating to a web site uses service requests

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC
BY 4.0)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

https://webperf.tips/tip/browser-process-model/

One browser, many processes

Service-oriented architecture:
More benefits

• Ability to change components independently
• Independent processes (Isolation, Security)
• Focusing on doing one thing well

MICROSERVICES

Why do we need microservices if we already
have modular architectures and SOA?

● Monoliths:
○ Often lack modularity, and even “modular” monoliths

are tightly coupled in runtime.
● Service oriented architectures:

○ More flexible, but often heavyweight and centralized.

Microservices

Database Database Database Database Database

“Small autonomous services that work well
together”

 Sam Newman

Microservices

Netflix Microservices – App Boot

• Recommendations
• Trending Now
• Continue Watching
• My List
• Metrics

3
7

(as of 2016)

3
8

Microservices: Demo

Service Language Description

frontend Go
Exposes an HTTP server to serve the website. Does not require signup/login and
generates session IDs for all users automatically.

cartservice C# Stores the items in the user's shopping cart in Redis and retrieves it.

productcatalogservice Go
Provides the list of products from a JSON file and ability to search products and get
individual products.

currencyservice Node.js
Converts one money amount to another currency. Uses real values fetched from
European Central Bank. It's the highest QPS service.

paymentservice Node.js
Charges the given credit card info (mock) with the given amount and returns a
transaction ID.

shippingservice Go
Gives shipping cost estimates based on the shopping cart. Ships items to the given
address (mock)

emailservice Python Sends users an order confirmation email (mock).

checkoutservice Go
Retrieves user cart, prepares order and orchestrates the payment, shipping and the
email notification.

recommendationservice Python Recommends other products based on what's given in the cart.

adservice Java Provides text ads based on given context words.

loadgenerator Python/Locust Continuously sends requests imitating realistic user shopping flows to the frontend.

https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/frontend
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/cartservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/productcatalogservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/currencyservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/paymentservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/shippingservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/emailservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/checkoutservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/recommendationservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/adservice
https://github.com/GoogleCloudPlatform/microservices-demo/blob/main/src/loadgenerator

Monoliths vs Microservices

Activity: In teams of 3-4
What are the consequences of this architecture? On:
• Scalability
• Reliability
• Performance
• Development
• Maintainability
• Testability
• Ownership

Pick two
quality

attributes

Scalability

4
4

Source: http://martinfowler.com/articles/microservices.html

Types of scaling: vertical vs. horizontal

Data management and consistency

4
6 Source: http://martinfowler.com/articles/microservices.html

Deployment and Evolution

4
7 Source: http://martinfowler.com/articles/microservices.html

MICROSERVICES: PRINCIPLES

4
9

Sam Newman’s Principles of Microservices

Principles

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First

Isolate Failures

Highly
Observable

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First

Isolate Failures

Highly
Observable

Principle 1: Domain-driven modeling

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

• Model services around
business capabilities

Principle 1: Domain-driven modeling

Principle 1: Domain-driven modeling

Principle 2: Culture of Automation

• API-Driven Machine Provisioning
• Continuous Delivery
• Automated Testing

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

API-Driven Machine Provisioning

Example: Infrastructure as code (IaC)

Image source: https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code

Image Source: https://learn.microsoft.com/en-us/azure/architecture/microservices/ci-cd

Continuous Delivery More on this topic later

Principle 3: Hide implementation details

• Design carefully your APIs
• It’s easier to expose some details

later than hide them
• Do not share your database!

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

Principle 3: Hide implementation details

Recall: Encapsulation in OOP

Sharing database: Anti-pattern

Principle 4: Decentralized Governance

• Mind Conway’s Law
• You Build It, You Run It
• Embrace team autonomy
• Internal Open Source Model

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

Mind Conway’s Law

Mind Conway’s Law

“Products” not “Projects”

Principle 5: Deploy Independently

• One Service Per OS
• Consumer-Driven Contracts
• Multiple co-existing versions

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

One Service Per OS Q.
What is the problem

with this deployment?

Consumer-Driven Contracts

Multiple coexisting versions

Principle 6: Consumer First

• Encourage conversations
• API Documentation
• Service Discovery

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

Encourage conversations

vs

API Documentation

Principle 7: Isolate Failure
• Avoid cascading failures
• Timeouts between components
• Fail fast aka Design for Failure

• Bulkheading / Circuit breakers

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

Image source: blogs.halodoc.io

Closed circuit Open circuit

Principle 8: Highly Observable

• Standard Monitoring
• Health-Check Pages
• Log and Stats aggregation
• Downstream monitoring

Principles

Domain
Driven

Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer
First

Isolate
Failures

Highly
Observable

Principle 8: Highly Observable

• Standard Monitoring
• Health-Check Pages
• Log and Stats aggregation
• Downstream monitoring

Sam Newman’s Principles of Microservices

Principles

Domain Driven
Modeling

Culture of
Automation

Hide
Implementation

Details

Decentralized
Governance

Deploy
Independently

Consumer First

Isolate Failures

Highly
Observable

Are microservices always the right choice?

8
3

Summary: Microservice challenges

• Too many choices
• Delay between investment and payback
• Complexities of distributed systems

• network latency, faults, inconsistencies
• testing challenges

• Monitoring is more complex
• More system states
• More points of failure
• Operational complexity
• Frequently adopted by breaking down a

monolithic application

Summary: Advantages of Microservices

• Ship features faster and safer
• Scalability
• Target security concerns
• Allow the interplay of different systems and languages, no

commitment to a single technology stack
• Easily deployable and replicable
• Embrace uncertainty, automation, and faults

Microservices overhead

