
Build Software Safely!
17-313 Fall 2025

Foundations of Software Engineering
https://cmu-17313q.github.io

Eduardo Feo Flushing 

https://cmu-17313q.github.io/


Learning Goals

• Learn to discuss risk in a project
• Strategize about ways to mitigate risk
• Learn to get early feedback to reduce risk
• Find ways to catch our technical errors

2



Risk



Definition: Risk

Risk is a measure of the potential inability to achieve overall program 
objectives within defined cost, schedule, and technical constraints.

Conrow, E. 2003. Effective Risk Management: Some Keys to Success, 2nd ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics (AIAA).



Risk is defined by two key components

The probability (or likelihood) of 
failing to achieve a particular 

outcome

9

The consequences (or impact) of 
failing to achieve that outcome

Conrow, E. 2003. Effective Risk Management: Some Keys to Success, 2nd ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics (AIAA).



Internal vs. External Risk

10

Risks that we can control Risks that we cannot control



Levels of Risk Management
1. Elimination of root causes: 

• Identify and eliminate factors that make it possible for risks to exist at all.
2. Prevention: 

• Implement and execute a plan as part of the software project to identify 
risks and prevent them from becoming problems.

3. Risk mitigation: 
• Plan ahead of time to provide resources to cover risks if they occur, but you 

don’t reduce the chance of the risk happening.
4. Fix on failure: 

• Detect and react to risks quickly, but only after they have occurred.
5. Crisis management: 

• Fire fighting; address risks only after they become problems.

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996



Levels of Risk Management

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Elimination of root causes

Prevention

Timeline of events

Eff
or

t 
be

fo
re

 e
ve

nt
s

Risk Mitigation

Fix on Failure

Crisis Management



Levels of Risk Management
1. Elimination of root causes: 

• You build the house with fireproof materials and remove all potential fire hazards to 
prevent the fire from ever occurring.

2. Prevention
• You install smoke detectors, inspect wiring, and remove fire hazards to reduce the chance 

of a fire starting.
3. Risk mitigation

• You install fire extinguishers and sprinklers to reduce the damage when a fire occurs but 
take no steps to prevent the fire.

4. Fix on failure
• You have smoke detectors that alert you to the fire, and you react quickly once it's detected.

5. Crisis management
• You wait until the fire is visible and then call the fire department to put it out.



Levels of Risk Management

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

1. Elimination of root causes: 
• Identify and eliminate factors that make it possible for risks to exist at all.

2. Prevention: 
• Implement and execute a plan as part of the software project to identify 

risks and prevent them from becoming problems.
3. Risk mitigation: 

• Plan ahead of time to provide resources to cover risks if they occur, but do 
nothing to eliminate them in the first place.

4. Fix on failure: 
• Detect and react to risks quickly, but only after they have occurred.

5. Crisis management: 
• Fire fighting; address risks only after they become problems.Not covered in this class



Risk Management

17

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

These are core tasks that support prevention, mitigation, and root-cause elimination



“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Risk Management



Team Exercise: Risk Identification
● What risks exist for the scooter app?



Risk assessment matrix

• MIL-STD-882E
https://www.system-safety.org/Documents/MIL-STD-882E.pdf



Aviation failure impact categories

• No effect – failure has no impact on safety, aircraft operation, or 
crew workload

• Minor – failure is noticeable, causing passenger inconvenience 
or flight plan change

• Major – failure is significant, causing passenger discomfort and 
slight workload increase

• Hazardous – high workload, serious or fatal injuries
• Catastrophic – loss of critical function to safely fly and land

DO-178b, Software Considerations in Airborne Systems and Equipment Certification, RTCA, 
1992



Risk Analysis

22

Risk Probability
(%)

Size of Loss
(weeks)

Risk Exposure
(weeks)

Overly optimistic schedule 50% 5 2.5

Additional features added by marketing (specific features unknown) 35% 8 2.8

Project approval takes longer than expected 25% 4 1.0

Management-level progress reporting takes more developer time than 
expected 10% 1 0.1

New programming tools do not produce the promised savings 30% 5 1.5

... ... ... ...

Total 12



Sad truth: 
Risk analysis often becomes a 
numbers game to justify 
regulations or investments, rather 
than a tool for genuine safety 
improvement.

The purpose for computing this is 
that there needs to be some 
comparison number to decide if 
regulations or investments are 
justified on an economic basis. 



Exercise: Risk Analysis
● What is the risk probability and severity for your scooter app?

Frequent, Probable, Not so often, almost never
Extensive, Major, Medium, Minor, No Impact



Risk Prioritization
Focus on risks with the highest exposure

25



“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Risk Management



Risk Control
• What steps can be taken to avoid or mitigate the risk?
• Can you better understand and forecast the risk?
• Who will be responsible for monitoring and addressing the 

risk?
• Have risks evolved over time?
• Incorporate risks into your schedule

• Don’t assume everything will go smoothly between now and the end 
of the semester!



Pre-mortems

• "unlike a typical critiquing session, in which project team 
members are asked what might go wrong, the premortem 
operates on the assumption that the 'patient' has died, and so 
asks what did go wrong."



Discussion: Risk Elimination and Mitigation
● How can you eliminate/mitigate risk for your scooter app?



The Swiss cheese model
Regulatory 
narrowness

Incomplete 
procedures

Mixed 
messages

Production 
pressures

Responsibility
shifting

Inadequate 
training

Attention 
distractions

Deferred 
maintenance

Clumsy 
technology

Institutional

Organization
Profession

& Team Individual

Technical

Modified from Reason, 1999, by R.I. Crook

Risk control needs multiple 
overlapping defenses



The Swiss cheese model

Institutional

Organization
Profession

& Team Individual

Technical

Modified from Reason, 1999, by R.I. Crook

To Err Is Human



Can we remove human error?
32



Why do we make mistakes?



Generalization
• …in the words of psychologist Tom Stafford, we can’t find our typos because 

we’re engaging in a high-level task in writing. Our brains generalize simple, 

component parts to focus on complex tasks, so essentially we can’t catch 

the small details because we’re focused on a large task.

https://medium.com/swlh/why-we-miss-our-own-typos-96ab2f06afb7



Boredom can give rise to errors, 
adverse patient events, and 
decreased productivity—costly and 
unnecessary outcomes for 
consumers, employees, and 
organizations alike. As a result of 
boredom, individuals may feel 
overworked or underutilized, and 
become distracted, stressed, or 
disillusioned. Staff who are bored 
also are less likely to engage with 
or focus on their work.

35



Cognitive Load
• ...” students who switch back and forth between attending a lecture 
and checking email, Facebook, and IMing with friends”

36



Can we remove human 
error?
Can we catch human error before releasing our code?
Can we automate tasks to prevent problems?

catch



38



Double entry accounting



Approach:
Automate what we can,
Review what we cannot



CI/CD Pipeline overview

Code Edit Tests Run

Code Merged
Code 

Deployed



Continuous Integration:

Catch mistakes before merging your code!
CI/CD reduces project risk by catching mistakes early.



Example CI Workflow

Source: https://innerjoin.bit.io/making-a-simple-data-pipeline-part-4-ci-cd-with-github-actions-733251f211a6



Observation
Continuous Integration 

helps us catch errors 
before others see them



For problems we can’t 
easily automate, we can 
perform code review

Code reviews reduce risk by catching errors humans introduce, 
especially those automation can’t detect.



Motivation
• Linus’s Law: “Given enough eyeballs, all bugs are shallow.”

• - The Cathedral and the Bazaar, Eric Raymond



Code Review at Microsoft

Bacchelli, Alberto and Christian Bird. "Expectations, outcomes, and challenges of modern code review." 
Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.



Outcomes (Analyzing Reviews) 



Mismatch of Expectations and Outcomes 
• Low quality of code reviews

• Reviewers often focus on easy-to-spot issues, such as formatting, and 
miss serious errors

• Understanding is the main challenge
• Understanding the reason for a change
• Understanding the code and its context
• Feedback channels to ask questions often needed

• There is often no assurance of the review’s overall quality



Code Review at Google
• Introduced to “force developers to write code that other 
developers could understand”

• Three benefits:
• checking the consistency of style and design
• ensuring adequate tests 
• improving security by making sure no single developer could commit 

arbitrary code without oversight

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern Code 
Review: A Case Study at Google. International Conference on Software Engineering



Code Review
• Start with the “big ideas”
• Automate the little things
• Focus on understanding
• Remember a person wrote the code
• Don’t overwhelm the person with feedback



Boeing Model 299 test on October 30, 1935. 

•Plane crashed because 
of locked elevator 
control surface (opposite 
effect of MCAS)



Checklists help manage complex 
processes

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist



How to create a checklist?

• Start with problems we have seen before
• “Safety regulations are written in blood”

• Justify why this is not automatable
• Not all checklist items need to be very specific

• An item could be “does this team know we are proposing this 
change”





Don’t forget that coders are people 
with feelings
• A coder’s self-worth is in their artifacts
• Continuous Integration can avoid embarrassment 
• Identify defects, not alternatives; do not criticize coder

• “you didn’t initialize variable a” -> “I don’t see where variable a is 
initialized”

• Avoid defending code; avoid discussions of solutions/alternatives
• Reviewers should not “show off” that they are better/smarter
• Avoid style discussions if there are no guidelines
• The coder gets to decide how to resolve fault


