
Build Software Safely!
17-313 Fall 2024

Foundations of Software Engineering
https://cmu-17313q.github.io

Eduardo Feo Flushing

https://cmu-17313q.github.io/

Learning Goals

• Learn to discuss risk in a project
• Strategize about ways to mitigate risk
• Learn to get early feedback to reduce risk
• Find ways to catch our technical errors

2

Administrivia

Recover the points you lost in P2A. This is the procedure:
1. Check the P2A feedback
2. Fix the project plan according to the feedback provided
3. Contact your mentor on Slack to inform them you have

resolved the issues. Explain the modifications you made
and how they address the deficiencies.

• Midterm Next Sunday, October 6th
• Review Session: Thursday during Recitation

Smoking Section

•Last two full rows

4

Risk

Definition: Risk

Risk is a measure of the potential inability to achieve overall program
objectives within defined cost, schedule, and technical constraints.

Conrow, E. 2003. Effective Risk Management: Some Keys to Success, 2nd ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics (AIAA).

Risk is defined by two key components

The probability (or likelihood) of
failing to achieve a particular

outcome

7

The consequences (or impact) of
failing to achieve that outcomes

Conrow, E. 2003. Effective Risk Management: Some Keys to Success, 2nd ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics (AIAA).

Internal vs. External Risk

8

Risks that we can control Risks that we cannot control

Levels of Risk Management
1. Crisis management: Fire fighting; address risks only after they have

become major problems.
2. Fix on failure: Detect and react to risks quickly, but only after they have

occurred.
3. Risk mitigation: Plan ahead of time to provide resources to cover risks if

they occur, but do nothing to eliminate them in the first place.
4. Prevention: Implement and execute a plan as part of the software project

to identify risks and prevent them from becoming problems.
5. Elimination of root causes: Identify and eliminate factors that make it

possible for risks to exist at all.

9

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Levels of Risk Management
1. Crisis management

• You wait until the fire is visible and then call the fire department to put it out.
2. Fix on failure

• You have smoke detectors that alert you to the fire, and you react quickly once it's detected.
3. Risk mitigation

• You install fire extinguishers and sprinklers to reduce the damage when a fire occurs but take
no steps to prevent the fire.

4. Prevention
• You install smoke detectors, inspect wiring, and remove fire hazards to reduce the chance of a

fire starting.
5. Elimination of root causes:

• You build the house with fireproof materials and remove all potential fire hazards to prevent
the fire from ever occurring.

10

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Levels of Risk Management
1. Crisis management: Fire fighting; address risks only after they have

become problems.
2. Fix on failure: Detect and react to risks quickly, but only after they

have occurred.
3. Risk mitigation: Plan ahead of time to provide resources to cover

risks if they occur, but do nothing to eliminate them in the first
place.

4. Prevention: Implement and execute a plan as part of the software
project to identify risks and prevent them from becoming problems.

5. Elimination of root causes: Identify and eliminate factors that
make it possible for risks to exist at all.

11

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Risk Management

12

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Risk Management

Team Exercise: Risk Identification
● What risks exist for the scooter app?

Risk assessment matrix

• MIL-STD-882E
https://www.system-safety.org/Documents/MIL-STD-882E.pdf

Aviation failure impact categories

• No effect – failure has no impact on safety, aircraft operation, or
crew workload

• Minor – failure is noticeable, causing passenger inconvenience
or flight plan change

• Major – failure is significant, causing passenger discomfort and
slight workload increase

• Hazardous – high workload, serious or fatal injuries
• Catastrophic – loss of critical function to safely fly and land

DO-178b, Software Considerations in Airborne Systems and Equipment Certification, RTCA,
1992

Risk Analysis

17

Risk Probability
(%)

Size of Loss
(weeks)

Risk Exposure
(weeks)

Overly optimistic schedule 50% 5 2.5

Additional features added by marketing (specific features unknown) 35% 8 2.8

Project approval takes longer than expected 25% 4 1.0

Management-level progress reporting takes more developer time than
expected 10% 1 0.1

New programming tools do not produce the promised savings 30% 5 1.5

...

Total 12

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Exercise: Risk Analysis
● What is the risk probability and severity for your scooter app?

Frequent, Probable, Not so often, almost never
Extensive, Major, Medium, Minor, No Impact

Risk Prioritization
Focus on risks with the highest exposure

19

“Rapid Development: Taming Wild Software Schedules,” Steve McConnell, 1996

Risk Management

Risk Control
• What steps can be taken to avoid or mitigate the risk?
• Can you better understand and forecast the risk?
• Who will be responsible for monitoring and addressing the

risk?
• Have risks evolved over time?
• Bake risks into your schedule

• Don’t assume that nothing will go wrong between now and the end of
the semester!

Pre-mortems

• "unlike a typical critiquing session, in which project team
members are asked what might go wrong, the premortem
operates on the assumption that the 'patient' has died, and so
asks what did go wrong."

Discussion: Risk Elimination and Mitigation
● How can you eliminate/mitigate risk for your scooter app?

The Swiss cheese model
Regulatory
narrowness

Incomplete
procedures

Mixed
messages

Production
pressures

Responsibility
shifting

Inadequate
training

Attention
distractions

Deferred
maintenance

Clumsy
technology

Institutional

Organization
Profession

& Team Individual

Technical

Modified from Reason, 1999, by R.I. Crook

Can we remove human error?
25

Why do we make mistakes? 26

Generalization
• …in the words of psychologist Tom Stafford, we can’t find our typos because

we’re engaging in a high-level task in writing. Our brains generalize simple,

component parts to focus on complex tasks, so essentially we can’t catch

the small details because we’re focused on a large task.

https://medium.com/swlh/why-we-miss-our-own-typos-96ab2f06afb7

Boredom can give rise to errors,
adverse patient events, and
decreased productivity—costly and
unnecessary outcomes for
consumers, employees, and
organizations alike. As a function
of boredom, individuals may feel
over-worked or under-employed,
and become distracted, stressed, or
disillusioned. Staff who are bored
also are less likely to engage with or
focus on their work.

28

Cognitive Load
• ...” students who switch back and forth between attending to a
classroom lecture and checking e-mail, Facebook, and IMing with
friends”

29

Can we remove human
error?
Can we catch human error before we ship our code?
Can we automate tasks to prevent problems?

30

catch

31

Double entry accounting

Approach:
Automate what we can
Review what we cannot

CI/CD Pipeline overview

Code Edit Tests Run

Code Merged
Code

Deployed

Continuous Integration:

Catch mistakes before you push your code! 35

History of CI

(1999) Extreme Programming (XP) rule: “Integrate Often”

(2000) Martin Fowler posts “Continuous Integration” blog

(2001) First CI tool

(2005) Hudson/Jenkins

(2011) Travis CI

(2019) GitHub Actions

https://martinfowler.com/articles/continuousIntegration.html

Example CI Workflow

Source: https://innerjoin.bit.io/making-a-simple-data-pipeline-part-4-ci-cd-with-github-actions-733251f211a6

Example CI/CD Workflow

CI Research

39

“523 complete responses, and a total of 691 survey responses from over 30 countries. Over 50% of our
participants had over 10 years of software development experience, and over 80% had over 4 years of

experience.”

Do developers on projects with CI give (more/similar/less) value to automated tests?

40

Developers report:

Do developers on projects with CI give (more/similar/less) value to automated tests?
Do projects with CI have (higher/similar/lower) test quality?

41

Developers report:

Do developers on projects with CI give (more/similar/less) value to automated tests?
Do projects with CI have (higher/similar/lower) test quality?
Do projects with CI have (higher/similar/lower) code quality?

42

Developers report:

Do developers on projects with CI give (more/similar/less) value to automated tests?
Do projects with CI have (higher/similar/lower) test quality?
Do projects with CI have (higher/similar/lower) code quality?
Are developers on projects with CI (more/similar/less) productive?

43

Developers report:

Challenge: Flaky Tests

44

“Google has around 4.2 million tests that run on our
continuous integration system. Of these, around 63
thousand have a flaky run over the course of a week”

https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html

Observation
CI helps us catch errors
before others see them

45

For problems we can’t
easily automate, we can
perform code review

Risk Analysis
• Probability a human makes a mistake: Very Likely
• Severity: ranges, but could be extensive

Solution:
Use CI to catch your mistakes, make you
look better, and mitigate your risks!

Use code reviews to teach and learn
(next lecture)

