
QA: Code Review &
Static Analysis

17-313 Fall 2024
Foundations of Software Engineering

https://cmu-17313q.github.io
Eduardo Feo Flushing

https://cmu-17313q.github.io/

Learning Goals

• Learn to get early feedback to reduce risk
• Find ways to catch our technical errors
• Gain an understanding of the relative strengths and
weaknesses of static analysis

• Examine several popular analysis tools and understand their
use cases

• Understand how analysis tools are used in large open source
software

2

Administrivia

• Past Exams posted
• Cheat Sheet

• One double-sided A4 .
• You must submit it.
• Handwritten = Bonus points.
• Printed cheat sheets permitted but not awarded points.

• Midterm Next Sunday, October 6th

• Review Session: Thursday during Recitation

P2B Grading Retrospective

• Improve Git usage
• PRs not linked to issues
• No dependencies / tags

• Align project board with repo
• Inconsistent PR quality (some good, some bad)
• Make your contributions visible

Smoking Section

•Last two full rows

5

Risk Analysis
• Probability a human makes a mistake: Very Likely
• Severity: ranges, but could be extensive

Solution:
Use CI to catch your mistakes, make you
look better, and mitigate your risks!

QA: Static Analysis
(today’s lecture)

Use code reviews to teach and learn
(today’s lecture)

For problems we can’t
easily automate, we can
perform code review

Boeing Model 299 test on October 30,
1935.
•Plane crashed because
of locked elevator
control surface (opposite
effect of MCAS)

Checklists help manage complex
processes

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist

How to create a checklist?

• Start with problems we have seen before
• “Safety regulations are written in blood”

• Justify why this is not automatable
• Not all checklist items need to be very specific

• An item could be “does this team know we are proposing this
change”

Activity: Create a checklist for code reviews

• In pairs, think about common mistakes your “friend” made
the last time they were coding.

• Write your names on a piece of paper.
• Write down two checklist items that would have caught those

errors.

• Divide into teams: left and right sides of the classroom.

• Which team had the most unique/good entries in their list?

Activity: Create a checklist for code reviews

• In groups, think about common mistakes your “friend” made
the last time they were coding.

• Write your names on a piece of paper.
• Write down two checklist items that would have caught those

errors.

Expectations and
outcomes for code review

Motivation
• Linus’s Law: “Given enough eyeballs, all bugs are shallow.”

• - The Cathedral and the Bazaar, Eric Raymond

Code Review at Microsoft

Bacchelli, Alberto and Christian Bird. "Expectations, outcomes, and challenges of modern code review."
Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

Outcomes (Analyzing Reviews)

Mismatch of Expectations and Outcomes
• Low quality of code reviews

• Reviewers look for easy errors, as formatting issues
• Miss serious errors

• Understanding is the main challenge
• Understanding the reason for a change
• Understanding the code and its context
• Feedback channels to ask questions often needed

• No quality assurance on the outcome

Code Review at Google
• Introduced to “force developers to write code that other
developers could understand”

• Three benefits:
• checking the consistency of style and design
• ensuring adequate tests
• improving security by making sure no single developer could commit

arbitrary code without oversight

Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern Code
Review: A Case Study at Google. International Conference on Software Engineering

Code Review
• Start with the “big ideas”
• Automate the little things
• Focus on understanding
• Remember a person wrote the code
• Don’t overwhelm the person with feedback

Don’t forget that coders are people
with feelings
• A coder’s self-worth is in their artifacts
• CI can avoid embarrassment
• Identify defects, not alternatives; do not criticize coder

• “you didn’t initialize variable a” -> “I don’t see where variable a is
initialized”

• Avoid defending code; avoid discussions of solutions/alternatives
• Reviewers should not “show off” that they are better/smarter
• Avoid style discussions if there are no guidelines
• The coder gets to decide how to resolve fault

Outline
• goto fail; and similar unfamous bugs
• Static analysis tools

• Linters for maintainability
• Pattern-based static analyzers

• Challenges of static analysis

Outline
• goto fail; and similar unfamous bugs
• Static analysis tools

• Linters for maintainability
• Pattern-based static analyzers

• Challenges of static analysis

1. static OSStatus

2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,

3. SSLBuffer signedParams,

4. uint8_t *signature,

5. UInt16 signatureLen) {

6. OSStatus err;

7. .…

8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

9. goto fail;

10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15. …

16. fail:

17. SSLFreeBuffer(&signedHashes);

18. SSLFreeBuffer(&hashCtx);

19. return err;

20. }

goto fail;

1. /* from Linux 2.3.99 drivers/block/raid5.c */

2. static struct buffer_head *

3. get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15. }

ERROR: function returns with
interrupts disabled!

Twitter’s week year bug

ISO 8601 rule: The first week of the year is the week
containing the first Thursday.
“So if January 1 falls on a Friday, it belongs to the last
week of the previous year. If December 31 falls on a
Wednesday, it belongs to week 01 of the following year.”

DateTimeFormatter.ofPattern("dd MMM YYYY").format(zonedDateTime)

Use yyyy instead of YYYY

Could you have found them?
• How often would those bugs trigger?

• Driver bug:
o What happens if you return from a driver with interrupts disabled?
o Consider: that’s one function

▪ …in a 2000 LOC file

▪ …in a module with 60,000 LOC

▪ …IN THE LINUX KERNEL

 Some defects are very difficult to find via testing, inspection.

Defects of interest…
• Are on uncommon or difficult-to-force execution paths. (vs

testing)
• Executing (or interpreting/otherwise analyzing) all paths

concretely to find such defects is infeasible.
• What we really want to do is check the entire possible state

space of the program for particular properties.
• What we CAN do is check an abstract state space of the

program for particular properties.

Activity: Analyze the Python program statically

def n2s(n: int, b: int):
 if n <= 0: return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u-10)
 n = n // b
 r = str(u) + r
 return r

1. What are the set of data types
taken by variable u at any point in
the program?

2. Can the variable u be a negative
number?

3. Will this function always return a
value?

4. Can there ever be a division by
zero?

5. Will the returned value ever
contain a minus sign ‘-’?

What is Static Analysis?
● Systematic examination of an abstraction of program state

space.
○ Does not execute code! (like code review)

● Abstraction: produce a representation of a program that is
simpler to analyze.
○ Results in fewer states to explore; makes difficult problems tractable.

● Check if a particular property holds over the entire state space:
● Liveness: “something good eventually happens.”

○ Safety: “this bad thing can’t ever happen.”
○ Compliance with mechanical design rules.

What static analysis can and cannot do
• Type-checking is well established

• Set of data types taken by variables at any point
• Can be used to prevent type errors (e.g. Java) or warn about potential type errors

(e.g. Python)

• Checking for problematic patterns in syntax is easy and fast
• Is there a comparison of two Java strings using `==`?
• Is there an array access `a[i]` without an enclosing bounds check for `i`?

• Reasoning about termination is impossible in general
• Halting problem

• Reasoning about exact values is hard, but conservative analysis via abstraction is
possible

• Is the bounds check before `a[i]` guaranteeing that `I` is within bounds?
• Can the divisor ever take on a zero value?
• Could the result of a function call be `42`?
• Will this multi-threaded program give me a deterministic result?
• Be prepared for “MAYBE”

• Verifying some advanced properties is possible but expensive
• CI-based static analysis usually over-approximates conservatively

What static analysis can and cannot do

The Bad News: Rice’s Theorem
Every static analysis is necessarily incomplete,
unsound, undecidable, or a combination thereof

33

“Any nontrivial property about the language
recognized by a Turing machine is
undecidable.”

Henry Gordon Rice, 1953

Static Analysis is well suited to detecting
certain defects
• Security: Buffer overruns, improperly validated input…
• Memory safety: Null dereference, uninitialized data…
• Resource leaks: Memory, OS resources…
• API Protocols: Device drivers; real time libraries; GUI

frameworks
• Exceptions: Arithmetic/library/user-defined
• Encapsulation:

– Accessing internal data, calling private functions…
• Data races:

– Two threads access the same data without synchronization
34

Outline
• goto fail; and similar unfamous bugs
• Static analysis tools

• Linters for maintainability
• Pattern-based static analyzers

• Challenges of static analysis

Tools for Static Analysis

Static analysis is a key part of CI

Static analysis used to be an academic amusement;
now it’s heavily commercialized

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

https://github.com/marketplace

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

Static analysis is also integrated into IDEs

https://clang-analyzer.llvm.org

Linters
Cheap, fast, and lightweight static source analysis

https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important

Use linters to improve maintainability
Why? We spend more time reading code than writing it.

• Developers spend most of their time maintaining code
• Various estimates of the exact %, some as high as 80%

• Code is ownership is usually shared
• The original owner of some code may move on
• Code conventions make it easier for other developers to quickly

understand your code

Use Style Guidelines to facilitate communication
• Indentation
• Comments
• Line length
• Naming
• Directory structure
• ...

https://www.chicagomanualofstyle.org/ | https://google.github.io/styleguide/ | https://www.python.org/dev/peps/pep-0008

Guidelines are inherently opinionated, but consistency is the important point.
Agree to a set of conventions and stick to them.

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008

Use linters to enforce style guidelines
Don’t rely on manual inspection during code review!

https://checkstyle.sourceforge.io/

Automatically reformat your existing code
Developer time is valuable!

https://www.jetbrains.com/help/idea/reformat-and-rearrange-code.html

https://black.vercel.app/

Style is an easy way to improve readability
• Everyone has their own opinion (e.g., tabs vs. spaces)
• Agree to a convention and stick to it

• Use continuous integration to enforce it
• Use automated tools to fix issues in existing code

Pattern-based Static Analysis Tools

• Bad Practice
• Correctness
• Performance
• Internationalization
• Malicious Code
• Multithreaded Correctness
• Security
• Dodgy Code

http://findbugs.sourceforge.net/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

http://findbugs.sourceforge.net/bugDescriptions.html

Example: Bad Practice

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
 System.out.println("x and y are the same!");
} else {
 System.out.println("x and y are different!");
}

ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==

Example: Bad Practice

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
if (x.equals(y)) {
 System.out.println("x and y are the same!");
} else {
 System.out.println("x and y are different!");
}ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==

Example: Performance

51

public static String repeat(String string, int times)
{
 String output = string;
 for (int i = 1; i < times; ++i) {
 output = output + string;
 }
 return output;
}

SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

Example: Performance

52

public static String repeat(String string, int times)
{
 StringBuffer output = new StringBuffer(string);
 for (int i = 1; i < times; ++i) {
 output.append(string);
 }
 return output.toString();
}

SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

Use type annotations to detect common errors
• Uses a conservative analysis to prove the absence of certain

defects:
• Unsanitized input, Null pointer errors, uninitialized fields, certain

liveness issues, information leaks, SQL injections, bad regular
expressions, incorrect physical units, bad format strings, …

• Assuming that code is annotated and those annotations are
correct

• Use annotations to enhance type system

void demo() {
 @m int x;
 x = 5 * m;

 @m int meters = 5 * m;
 @s int seconds = 2 * s;

 @mPERs int speed = meters / seconds;
 @m int foo = meters + seconds;
 @s int bar = seconds - meters;
}

@m indicates that x represents meters

To assign a unit, multiply
appropriate unit
constant

Does this program compile? No

“Malicious” User Inputs
void processRequest() {
 String input = getUserInput();
 String query = "SELECT ... " + input;
 executeQuery(query);
}

Taint Analysis
Prevents untrusted (tainted) data from
reaching sensitive locations (sinks)

Taint Checking using Annotations

void processRequest() {
 @Tainted String input = getUserInput();
 executeQuery(input);
}

public void executeQuery(@Untainted String input) {
 // ...
}

@Untainted public String validate(String userInput) {
 // ...
}

Indicates that data is tainted

Argument must be untainted

Guarantees that return value is untainted

Does this program compile?

void processRequest() {
 @Tainted String input = getUserInput();
 if (input.contains("drop tables")) {
 input = validate(input);
 }
 executeQuery(input);
}

input is NOT
guaranteed to be
@Untainted

No

Does this program compile?

void processRequest() {
 @Tainted String input = getUserInput();
 input = validate(input);
 executeQuery(input);
}

Yes

Outline
• goto fail; and similar unfamous bugs
• Static analysis tools

• Linters for maintainability
• Pattern-based static analyzers

• Challenges of static analysis

What makes a good static analysis tool?
• Static analysis should be fast

• Don’t hold up development velocity
• This becomes more important as code scales

• Static analysis should report few false positives
• Otherwise developers will start to ignore warnings and alerts, and quality will

decline
• Static analysis should be continuous

• Should be part of your continuous integration pipeline
• Diff-based analysis is even better -- don’t analyse the entire codebase; just the

changes
• Static analysis should be informative

• Messages that help the developer to quickly locate and address the issue
• Ideally, it should suggest or automatically apply fixes

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

Lessons for Static Analysis Tools at Google

• Make It a Compiler Workflow
• Value of compiler checks.
• Reporting issues sooner is

better
• Warn During Code Review
• Engineers working on static

analysis must demonstrate
impact through hard data.

Lessons for Static Analysis Tools at Google

• Finding bugs is easy
• Most developers will not go out

of their way to use static
analysis tools.

• Developer happiness is key.
• Do not just find bugs, fix
• them.
• Crowdsource analysis
• development.

Reasons engineers do not always use static
analysis tools or ignore their warnings
• Not integrated.

• The tool is not integrated into the developer's workflow or takes too long to run
• Not actionable

• Whenever possible, the error should include a suggested fix that can be applied
mechanically

• Not trustworthy
• Users do not trust the results

• Not manifest in practice.
• The reported bug is theoretically possible, but the problem does not actually

manifest in practice
• Too expensive to fix.

• Fixing the detected bug is too expensive or risky
• Warnings not understood

https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext

What you need to know
Early feedback through
code reviews and static
analysis is crucial for
reducing risk and
preventing technical
errors.

Static analysis tools enhance
code quality and
maintainability while
integrating seamlessly with CI
for continuous checks.

Effective code reviews
combine structured
checklists with an
empathetic, constructive
approach to foster
collaboration and improve
code quality.

Static analysis has
strengths in detecting
issues like security
vulnerabilities and
performance problems,
but it also has limitations
and challenges.

