
Static and Dynamic Analysis
17-313, Foundations of Software Engineering, Fall 2023

Learning Goals

● Gain an understanding of the relative strengths and weaknesses of static and
dynamic analysis

● Examine several popular analysis tools and understand their use cases
● Understand how analysis tools are used in large open source software

Outline

● goto fail; and similar unfamous bugs
● Static analysis vs dynamic analysis
● Static analysis tools

○ Linters for maintainability
○ Pattern-based static analyzers

● Challenges of static analysis

1. static OSStatus

2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,

3. SSLBuffer signedParams,

4. uint8_t *signature,

5. UInt16 signatureLen) {

6. OSStatus err;

7. .…

8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

9. goto fail;

10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15. …

16. fail:

17. SSLFreeBuffer(&signedHashes);

18. SSLFreeBuffer(&hashCtx);

19. return err;

20. }

goto fail;

1. /* from Linux 2.3.99 drivers/block/raid5.c */

2. static struct buffer_head *

3. get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15. }

ERROR: function returns with
interrupts disabled!

Twitter’s week year bug
ISO 8601 rule: The first week of the year is the week
containing the first Thursday.
“So if January 1 falls on a Friday, it belongs to the last
week of the previous year. If December 31 falls on a
Wednesday, it belongs to week 01 of the following year.”

DateTimeFormatter.ofPattern("dd MMM YYYY").format(zonedDateTime)

Use yyyy instead of YYYY

Could you have found them?

• How often would those bugs trigger?
• Driver bug:

o What happens if you return from a driver with interrupts disabled?
o Consider: that’s one function

▪ …in a 2000 LOC file
▪ …in a module with 60,000 LOC
▪ …IN THE LINUX KERNEL

 Some defects are very difficult to find via testing, inspection.

Defects of interest…

• Are on uncommon or difficult-to-force execution paths. (vs
testing)

• Executing (or interpreting/otherwise analyzing) all paths
concretely to find such defects is infeasible.

• What we really want to do is check the entire possible state
space of the program for particular properties.

• What we CAN do is check an abstract state space of the
program for particular properties.

Activity: Analyze the Python program statically

def n2s(n: int, b: int):
 if n <= 0: return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u-10)
 n = n // b
 r = str(u) + r
 return r

1. What are the set of data types taken
by variable `u` at any point in the
program?

2. Can the variable u be a negative
number?

3. Will this function always return a
value?

4. Can there ever be a division by zero?
5. Will the returned value ever contain a

minus sign ‘-’?

What is Static Analysis?

● Systematic examination of an abstraction of program state
space.
○ Does not execute code! (like code review)

● Abstraction: produce a representation of a program that is
simpler to analyze.
○ Results in fewer states to explore; makes difficult problems tractable.

● Check if a particular property holds over the entire state
space:

● Liveness: “something good eventually happens.”
○ Safety: “this bad thing can’t ever happen.”
○ Compliance with mechanical design rules.

What static analysis can and cannot do

● Type-checking is well established
○ Set of data types taken by variables at any point
○ Can be used to prevent type errors (e.g. Java) or warn about potential type errors

(e.g. Python)

● Checking for problematic patterns in syntax is easy and fast
○ Is there a comparison of two Java strings using `==`?
○ Is there an array access `a[i]` without an enclosing bounds check for `i`?

● Reasoning about termination is impossible in general
○ Halting problem

● Reasoning about exact values is hard, but conservative analysis via abstraction is
possible
○ Is the bounds check before `a[i]` guaranteeing that `I` is within bounds?
○ Can the divisor ever take on a zero value?
○ Could the result of a function call be `42`?
○ Will this multi-threaded program give me a deterministic result?
○ Be prepared for “MAYBE”

● Verifying some advanced properties is possible but expensive
○ CI-based static analysis usually over-approximates conservatively

The Bad News: Rice’s Theorem

Every static analysis is necessarily incomplete, unsound,
undecidable, or a combination thereof

13

“Any nontrivial property about the language
recognized by a Turing machine is undecidable.”

Henry Gordon Rice, 1953

Static Analysis is well suited to detecting certain defects

• Security: Buffer overruns, improperly validated input…
• Memory safety: Null dereference, uninitialized data…
• Resource leaks: Memory, OS resources…
• API Protocols: Device drivers; real time libraries; GUI frameworks
• Exceptions: Arithmetic/library/user-defined
• Encapsulation:

– Accessing internal data, calling private functions…
• Data races:

– Two threads access the same data without synchronization

14

Activity: Analyze the Python program dynamically

def n2s(n: int, b: int):
 if n <= 0: return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u-10)
 n = n // b
 r = str(u) + r
 return r

print(n2s(12, 10))

1. What are the set of data types taken by
variable `u` at any point in the program?

2. Did the variable `u` ever contain a negative
number?

3. For how many iterations did the while loop
execute?

4. Was there ever be a division by zero?
5. Did the returned value ever contain a

minus sign ‘-’?

Dynamic analysis reasons about program executions

● Tells you properties of the program that were definitely observed
○ Code coverage
○ Performance profiling
○ Type profiling
○ Testing

● In practice, implemented by program instrumentation
○ Think “Automated logging”
○ Slows down execution speed by a small amount

Static Analysis

• Requires successful build + test inputs

• Observes individual executions

• Reported problems are real, as observed
by a witness input

• Can only report problems that are seen.
Highly dependent on test inputs. Subject
to false negatives

• Advanced techniques like symbolic
execution can prove certain complex
properties, but rarely run in CI due to
cost

• Requires only source code

• Conservatively reasons about all possible
inputs and program paths

• Reported warnings may contain false
positives

• Can report all warnings of a particular class
of problems

• Advanced techniques like verification can
prove certain complex properties, but rarely
run in CI due to cost

Dynamic Analysis

Static Analysis Tools

18

Tools for Static Analysis

Static analysis can be applied to all attributes

● Find bugs
● Refactor code
● Keep your code stylish!
● Identify code smells
● Measure quality
● Find usability and accessibility

issues
● Identify bottlenecks and improve

performance

Static analysis is a key part of continuous integration

Static analysis is a growing industry

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

https://github.com/marketplace

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

Static analysis is also integrated into IDEs

https://clang-analyzer.llvm.org

What makes a good static analysis tool?

● Static analysis should be fast
○ Don’t hold up development velocity
○ This becomes more important as code scales

● Static analysis should report few false positives
○ Otherwise developers will start to ignore warnings and alerts, and quality will decline

● Static analysis should be continuous
○ Should be part of your continuous integration pipeline
○ Diff-based analysis is even better -- don’t analyse the entire codebase; just the changes

● Static analysis should be informative
○ Messages that help the developer to quickly locate and address the issue
○ Ideally, it should suggest or automatically apply fixes

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

Linters
Cheap, fast, and lightweight static source analysis

https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important

Linters for Maintainability

26

Use linters to improve maintainability
Why? We spend more time reading code than writing it.

● Developers spend most of their time maintaining code
○ Various estimates of the exact %, some as high as 80%

● Code is ownership is usually shared
● The original owner of some code may move on
● Code conventions make it easier for other developers to quickly

understand your code

Use Style Guidelines to facilitate communication

● Indentation
● Comments
● Line length
● Naming
● Directory structure
● ...

https://www.chicagomanualofstyle.org/ | https://google.github.io/styleguide/ | https://www.python.org/dev/peps/pep-0008

Guidelines are inherently opinionated, but consistency is the important point.
Agree to a set of conventions and stick to them.

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008

Use linters to enforce style guidelines
Don’t rely on manual inspection during code review!

https://checkstyle.sourceforge.io/

Automatically reformat your existing code
Developer time is valuable!

https://www.jetbrains.com/help/idea/reformat-and-rearrange-code.html

https://black.vercel.app/

Take Home Message:

Style is an easy way to improve
readability

● Everyone has their own opinion (e.g., tabs vs. spaces)
● Agree to a convention and stick to it

○ Use continuous integration to enforce it

● Use automated tools to fix issues in existing code

Pattern-Based Static Analyzers

32

https://github.com/analysis-tools-dev/static-analysis

33

clang-t
idy

Cheap and fast tools that scan Abstract Syntax Trees for
common developer mistakes known as patterns

SpotBugs

● Bad Practice
● Correctness
● Performance
● Internationalization
● Malicious Code
● Multithreaded Correctness
● Security
● Dodgy Code

http://findbugs.sourceforge.net/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

http://findbugs.sourceforge.net/bugDescriptions.html

SpotBugs can be extended with plugins

https://find-sec-bugs.github.io/

Bad Practice:

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
 System.out.println("x and y are the same!");
} else {
 System.out.println("x and y are different!");
}

Bad Practice: ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==

37

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
if (x.equals(y)) {
 System.out.println("x and y are the same!");
} else {
 System.out.println("x and y are different!");
}

Performance:

38

public static String repeat(String string, int times)
{
 String output = string;
 for (int i = 1; i < times; ++i) {
 output = output + string;
 }
 return output;
}

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

39

The method seems to be building a String using concatenation in a loop. In each iteration, the String is
converted to a StringBuffer/StringBuilder, appended to, and converted back to a String. This can lead to a
cost quadratic in the number of iterations, as the growing string is recopied in each iteration.

public static String repeat(String string, int times)
{
 String output = string;
 for (int i = 1; i < times; ++i) {
 output = output + string;
 }
 return output;
}

40

public static String repeat(String string, int times)
{
 StringBuffer output = new StringBuffer(string);
 for (int i = 1; i < times; ++i) {
 output.append(string);
 }
 return output.toString();
}

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

41

public static String repeat(String string, int times)
{
 int length = string.length() * times;
 StringBuffer output = new StringBuffer(length);
 for (int i = 0; i < times; ++i) {
 output.append(string);
 }
 return output.toString();
}

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop

Challenges of Static Analysis

42

Reasons engineers do not always use static
analysis tools or ignore their warnings

● Not integrated.
○ The tool is not integrated into the developer's workflow or takes too

long to run
● Not actionable

○ Whenever possible, the error should include a suggested fix that can
be applied mechanically

● Not trustworthy
○ Users do not trust the results

● Not manifest in practice.
○ The reported bug is theoretically possible, but the problem does not

actually manifest in practice
● Too expensive to fix.

○ Fixing the detected bug is too expensive or risky
● Warnings not understood

https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext

What are some of the problems with SpotBugs?

Google: Move static checks to the compiler

Developers can ignore warnings, but
they can’t ignore build errors

https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext

clang-tidy Error Prone

New languages have embraced the same idea

Code smells will cause the build to
fail (e.g., dead code)

Challenges

● The analysis must produce zero false positives
○ Otherwise developers won’t be able to build the code!

● The analysis needs to be really fast
○ Ideally < 100 ms
○ If it takes longer, developers will become irritated and lose productivity

● You can’t just “turn on” a particular check
○ Every instance where that check fails will prevent existing code from building
○ There could be thousands of violations for a single check across large codebases

Challenges

● The analysis must produce zero false positives
○ Otherwise developers won’t be able to build the code!

● The analysis needs to be really fast
○ Ideally < 100 ms
○ If it takes longer, developers will become irritated and lose productivity

● You can’t just “turn on” a particular check
○ Every instance where that check fails will prevent existing code from building
○ There could be thousands of violations for a single check across large codebases

Solution: Automatically patch existing bugs

49
https://errorprone.info/docs/refaster

public class StringIsEmpty {
 @BeforeTemplate
 boolean equalsEmptyString(String string) {
 return string.equals("");
 }

 @BeforeTemplate
 boolean lengthEquals0(String string) {
 return string.length() == 0;
 }

 @AfterTemplate
 @AlsoNegation
 boolean optimizedMethod(String string) {
 return string.isEmpty();
 }
}

@BeforeTemplate finds String expressions that
match the body of the method.

@AfterTemplate rewrites matching String
expressions to match the body of the method.

https://errorprone.info/docs/refaster

boolean b = someChained().methodCall().returningAString().length() == 0;

boolean b = someChained().methodCall().returningAString().isEmpty();

Solution: Automatically patch existing bugs

Outline

● goto fail; and similar unfamous bugs
● Static analysis vs dynamic analysis
● Static analysis tools

○ Linters for maintainability
○ Pattern-based static analyzers

● Challenges of static analysis

Summary

● Linters are cheap and fast static analysis tools!
● Style checkers can improve readability of code
● Pattern-based bug detectors catch common developer mistakes

○ Code smells, performance issues, correctness, ...
○ They don’t know the intent of the program, leading to occasional false positives
○ They reveal issues that are genuine, but which we don’t sufficiently care about
○ The best tools automatically fix detected issues
○ Each developer mistake needs its own analyzer / AST checker

○ They complement but don’t replace testing

