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Learning Goals

● Gain an understanding of the relative strengths and weaknesses of static and 
dynamic analysis

● Examine several popular analysis tools and understand their use cases
● Understand how analysis tools are used in large open source software



Outline

● goto fail; and similar unfamous bugs
● Static analysis vs dynamic analysis
● Static analysis tools

○ Linters for maintainability
○ Pattern-based static analyzers

● Challenges of static analysis



1. static OSStatus

2. SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, 

3.                                  SSLBuffer signedParams,

4.                                  uint8_t *signature, 

5.                                  UInt16 signatureLen) {

6. OSStatus err;

7.  .…

8. if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

9. goto fail;

10. if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

11. goto fail;

12. goto fail;

13. if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

14. goto fail;

15. …

16. fail:

17. SSLFreeBuffer(&signedHashes);

18. SSLFreeBuffer(&hashCtx);

19. return err;

20. }



goto fail;



1. /* from Linux 2.3.99 drivers/block/raid5.c */

2. static struct buffer_head *

3. get_free_buffer(struct stripe_head * sh, 

4.                 int b_size) {

5.   struct buffer_head *bh;

6.   unsigned long flags;

7.   save_flags(flags);

8.   cli(); // disables interrupts

9.   if ((bh = sh->buffer_pool) == NULL)

10.     return NULL;

11.   sh->buffer_pool = bh -> b_next;

12.   bh->b_size = b_size;

13.   restore_flags(flags); // re-enables interrupts

14.   return bh;

15. }

ERROR: function returns with 
interrupts disabled!



Twitter’s week year bug
ISO 8601 rule: The first week of the year is the week 
containing the first Thursday. 
“So if January 1 falls on a Friday, it belongs to the last 
week of the previous year. If December 31 falls on a 
Wednesday, it belongs to week 01 of the following year.”

DateTimeFormatter.ofPattern("dd MMM YYYY").format(zonedDateTime)

Use yyyy instead of YYYY



Could you have found them?

• How often would those bugs trigger?
• Driver bug:

o What happens if you return from a driver with interrupts disabled?
o Consider: that’s one function 

▪ …in a 2000 LOC file
▪ …in a module with 60,000 LOC
▪ …IN THE LINUX KERNEL

 Some defects are very difficult to find via testing, inspection.



Defects of interest…

• Are on uncommon or difficult-to-force execution paths. (vs 
testing)

• Executing (or interpreting/otherwise analyzing) all paths 
concretely to find such defects is infeasible.

• What we really want to do is check the entire possible state 
space of the program for particular properties. 

• What we CAN do is check an abstract state space of the 
program for particular properties.



Activity: Analyze the Python program statically

def n2s(n: int, b: int):
  if n <= 0: return '0'
  r = ''
  while n > 0:
    u = n % b
    if u >= 10:
      u = chr(ord('A') + u-10)
    n = n // b
    r = str(u) + r
  return r

1. What are the set of data types taken 
by variable `u` at any point in the 
program?

2. Can the variable u be a negative 
number?

3. Will this function always return a 
value?

4. Can there ever be a division by zero?
5. Will the returned value ever contain a 

minus sign ‘-’?



What is Static Analysis?

● Systematic examination of an abstraction of program state 
space.
○ Does not execute code! (like code review)

● Abstraction: produce a representation of a program that is 
simpler to analyze.
○ Results in fewer states to explore; makes difficult problems tractable.

● Check if a particular property holds over the entire state 
space:

● Liveness: “something good eventually happens.”
○ Safety: “this bad thing can’t ever happen.”
○ Compliance with mechanical design rules.



What static analysis can and cannot do

● Type-checking is well established
○ Set of data types taken by variables at any point
○ Can be used to prevent type errors (e.g. Java) or warn about potential type errors 

(e.g. Python)

● Checking for problematic patterns in syntax is easy and fast
○ Is there a comparison of two Java strings using `==`? 
○ Is there an array access `a[i]` without an enclosing bounds check for `i`?

● Reasoning about termination is impossible in general
○ Halting problem

● Reasoning about exact values is hard, but conservative analysis via abstraction is 
possible
○ Is the bounds check before `a[i]` guaranteeing that `I` is within bounds?
○ Can the divisor ever take on a zero value?
○ Could the result of a function call be `42`?
○ Will this multi-threaded program give me a deterministic result?
○ Be prepared for “MAYBE”

● Verifying some advanced properties is possible but expensive
○ CI-based static analysis usually over-approximates conservatively



The Bad News: Rice’s Theorem

Every static analysis is necessarily incomplete, unsound, 
undecidable, or a combination thereof
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“Any nontrivial property about the language 
recognized by a Turing machine is undecidable.”

Henry Gordon Rice, 1953



Static Analysis is well suited to detecting certain defects

• Security:  Buffer overruns, improperly validated input…
• Memory safety:  Null dereference, uninitialized data…
• Resource leaks:  Memory, OS resources…
• API Protocols:  Device drivers; real time libraries; GUI frameworks
• Exceptions:  Arithmetic/library/user-defined
• Encapsulation:

– Accessing internal data, calling private functions…
• Data races:

– Two threads access the same data without synchronization
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Activity: Analyze the Python program dynamically

def n2s(n: int, b: int):
  if n <= 0: return '0'
  r = ''
  while n > 0:
    u = n % b
    if u >= 10:
      u = chr(ord('A') + u-10)
    n = n // b
    r = str(u) + r
  return r

print(n2s(12, 10))

1. What are the set of data types taken by 
variable `u` at any point in the program?

2. Did the variable `u` ever contain a negative 
number?

3. For how many iterations did the while loop 
execute?

4. Was there ever be a division by zero?
5. Did the returned value ever contain a 

minus sign ‘-’?



Dynamic analysis reasons about program executions

● Tells you properties of the program that were definitely observed
○ Code coverage
○ Performance profiling
○ Type profiling
○ Testing

● In practice, implemented by program instrumentation
○ Think “Automated logging”
○ Slows down execution speed by a small amount



Static Analysis

• Requires successful build + test inputs 

• Observes individual executions

• Reported problems are real, as observed 
by a witness input

• Can only report problems that are seen. 
Highly dependent on test inputs. Subject 
to false negatives

• Advanced techniques like symbolic 
execution can prove certain complex 
properties, but rarely run in CI due to 
cost

• Requires only source code

• Conservatively reasons about all possible 
inputs and program paths

• Reported warnings may contain false 
positives

• Can report all warnings of a particular class 
of problems

• Advanced techniques like verification can 
prove certain complex properties, but rarely 
run in CI due to cost

Dynamic Analysis



Static Analysis Tools
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Tools for Static Analysis



Static analysis can be applied to all attributes

● Find bugs
● Refactor code
● Keep your code stylish!
● Identify code smells
● Measure quality
● Find usability and accessibility 

issues
● Identify bottlenecks and improve 

performance



Static analysis is a key part of continuous integration



Static analysis is a growing industry

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/

https://github.com/marketplace

https://www.sdxcentral.com/articles/news/snyk-secures-150m-snags-1b-valuation/2020/01/
https://techcrunch.com/2019/09/18/github-acquires-code-analysis-tool-semmle/


Static analysis is also integrated into IDEs

https://clang-analyzer.llvm.org



What makes a good static analysis tool?

● Static analysis should be fast
○ Don’t hold up development velocity
○ This becomes more important as code scales

● Static analysis should report few false positives
○ Otherwise developers will start to ignore warnings and alerts, and quality will decline

● Static analysis should be continuous
○ Should be part of your continuous integration pipeline
○ Diff-based analysis is even better -- don’t analyse the entire codebase; just the changes

● Static analysis should be informative
○ Messages that help the developer to quickly locate and address the issue
○ Ideally, it should suggest or automatically apply fixes

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext



Linters
Cheap, fast, and lightweight static source analysis

https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important



Linters for Maintainability
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Use linters to improve maintainability
Why? We spend more time reading code than writing it.

● Developers spend most of their time maintaining code
○ Various estimates of the exact %, some as high as 80%

● Code is ownership is usually shared
● The original owner of some code may move on
● Code conventions make it easier for other developers to quickly 

understand your code



Use Style Guidelines to facilitate communication

● Indentation
● Comments
● Line length
● Naming
● Directory structure
● ...

https://www.chicagomanualofstyle.org/ | https://google.github.io/styleguide/ | https://www.python.org/dev/peps/pep-0008

Guidelines are inherently opinionated, but consistency is the important point.
Agree to a set of conventions and stick to them.

https://www.chicagomanualofstyle.org/
https://google.github.io/styleguide/
https://www.python.org/dev/peps/pep-0008


Use linters to enforce style guidelines
Don’t rely on manual inspection during code review!

https://checkstyle.sourceforge.io/



Automatically reformat your existing code
Developer time is valuable!

https://www.jetbrains.com/help/idea/reformat-and-rearrange-code.html

https://black.vercel.app/


Take Home Message:

Style is an easy way to improve 
readability

● Everyone has their own opinion (e.g., tabs vs. spaces)
● Agree to a convention and stick to it

○ Use continuous integration to enforce it

● Use automated tools to fix issues in existing code



Pattern-Based Static Analyzers
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https://github.com/analysis-tools-dev/static-analysis
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clang-t
idy

Cheap and fast tools that scan Abstract Syntax Trees for 
common developer mistakes known as patterns



SpotBugs

● Bad Practice
● Correctness
● Performance
● Internationalization
● Malicious Code
● Multithreaded Correctness
● Security
● Dodgy Code

http://findbugs.sourceforge.net/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

http://findbugs.sourceforge.net/bugDescriptions.html


SpotBugs can be extended with plugins

https://find-sec-bugs.github.io/



Bad Practice:

String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
  System.out.println("x and y are the same!");
} else {
  System.out.println("x and y are different!");
}



Bad Practice: ES_COMPARING_STRINGS_WITH_EQ
Comparing strings with ==
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String x = new String("Foo");
String y = new String("Foo");

if (x == y) {
if (x.equals(y)) {
  System.out.println("x and y are the same!");
} else {
  System.out.println("x and y are different!");
}



Performance:
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public static String repeat(String string, int times)
{
  String output = string;
  for (int i = 1; i < times; ++i) {
    output = output + string;
  }
  return output;
}



Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop
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The method seems to be building a String using concatenation in a loop. In each iteration, the String is 
converted to a StringBuffer/StringBuilder, appended to, and converted back to a String. This can lead to a 
cost quadratic in the number of iterations, as the growing string is recopied in each iteration. 

public static String repeat(String string, int times)
{
  String output = string;
  for (int i = 1; i < times; ++i) {
    output = output + string;
  }
  return output;
}
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public static String repeat(String string, int times)
{
  StringBuffer output = new StringBuffer(string);
  for (int i = 1; i < times; ++i) {
    output.append(string);
  }
  return output.toString();
}

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop
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public static String repeat(String string, int times)
{
  int length = string.length() * times;
  StringBuffer output = new StringBuffer(length);
  for (int i = 0; i < times; ++i) {
    output.append(string);
  }
  return output.toString();
}

Performance: SBSC_USE_STRINGBUFFER_CONCATENATION
Method concatenates strings using + in a loop



Challenges of Static Analysis
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Reasons engineers do not always use static 
analysis tools or ignore their warnings

● Not integrated. 
○ The tool is not integrated into the developer's workflow or takes too 

long to run
● Not actionable

○ Whenever possible, the error should include a suggested fix that can 
be applied mechanically

● Not trustworthy
○ Users do not trust the results

● Not manifest in practice. 
○ The reported bug is theoretically possible, but the problem does not 

actually manifest in practice
● Too expensive to fix. 

○ Fixing the detected bug is too expensive or risky
● Warnings not understood

https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext



What are some of the problems with SpotBugs?



Google: Move static checks to the compiler

Developers can ignore warnings, but 
they can’t ignore build errors

https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext

clang-tidy Error Prone



New languages have embraced the same idea

Code smells will cause the build to 
fail (e.g., dead code)



Challenges

● The analysis must produce zero false positives
○ Otherwise developers won’t be able to build the code!

● The analysis needs to be really fast
○ Ideally < 100 ms
○ If it takes longer, developers will become irritated and lose productivity

● You can’t just “turn on” a particular check
○ Every instance where that check fails will prevent existing code from building
○ There could be thousands of violations for a single check across large codebases



Challenges

● The analysis must produce zero false positives
○ Otherwise developers won’t be able to build the code!

● The analysis needs to be really fast
○ Ideally < 100 ms
○ If it takes longer, developers will become irritated and lose productivity

● You can’t just “turn on” a particular check
○ Every instance where that check fails will prevent existing code from building
○ There could be thousands of violations for a single check across large codebases



Solution: Automatically patch existing bugs

49
https://errorprone.info/docs/refaster

public class StringIsEmpty {
  @BeforeTemplate
  boolean equalsEmptyString(String string) {
    return string.equals("");
  }

  @BeforeTemplate
  boolean lengthEquals0(String string) {
    return string.length() == 0;
  }

  @AfterTemplate
  @AlsoNegation
  boolean optimizedMethod(String string) {
    return string.isEmpty();
  }
}

@BeforeTemplate finds String expressions that 
match the body of the method.

@AfterTemplate rewrites matching String 
expressions to match the body of the method.



https://errorprone.info/docs/refaster

boolean b = someChained().methodCall().returningAString().length() == 0;

boolean b = someChained().methodCall().returningAString().isEmpty();

Solution: Automatically patch existing bugs



Outline

● goto fail; and similar unfamous bugs
● Static analysis vs dynamic analysis
● Static analysis tools

○ Linters for maintainability
○ Pattern-based static analyzers

● Challenges of static analysis



Summary

● Linters are cheap and fast static analysis tools!
● Style checkers can improve readability of code
● Pattern-based bug detectors catch common developer mistakes

○ Code smells, performance issues, correctness, ...
○ They don’t know the intent of the program, leading to occasional false positives
○ They reveal issues that are genuine, but which we don’t sufficiently care about
○ The best tools automatically fix detected issues
○ Each developer mistake needs its own analyzer / AST checker

○ They complement but don’t replace testing


