
Advanced Testing
17-313, Foundations of Software Engineering, Fall 2023

Learning Goals

● Describe random test-input generation strategies such as fuzz testing
● Characterize challenges of performance testing and suggest strategies
● Reason about failures in microservice applications how chaos engineering

can be applied to test resiliency of cloud-based applications
● Describe A/B testing for usability
● Identify the need for chaos and resilience engineering, and the principles of

chaos engineering

Outline

● More static analysis
○ annotations

● Fuzz Testing
● Testing Performance
● Testing Usability
● Chaos!

Java Checker Framework
Uses annotations to detect common errors

4https://checkerframework.org/

● Uses a conservative analysis to prove the absence of certain defects *
○ Null pointer errors, uninitialized fields, certain liveness issues, information leaks, SQL

injections, bad regular expressions, incorrect physical units, bad format strings, …
○ C.f. SpotBugs which makes no safety guarantees
○ Assuming that code is annotated and those annotations are correct

● Uses annotations to enhance Java’s type system

Taint Analysis
Prevents untrusted (tainted) data from reaching sensitive locations (sinks)

● Tracks flow of sensitive information through the program
● Tainted inputs come from arbitrary, possibly malicious sources

○ User inputs, unvalidated data

● Using tainted inputs may have dangerous consequences
○ Program crash, data corruption, leak private data, etc.

● We need to check that inputs are sanitized before reaching sensitive
locations

5

Classic Example: SQL Injection

6https://xkcd.com/327

Classic Example: SQL Injection

7

void processRequest() {
 String input = getUserInput();
 String query = "SELECT ... " + input;
 executeQuery(query);
}

Classic Example: SQL Injection

8

void processRequest() {
 String input = getUserInput();
 String query = "SELECT ... " + input;
 executeQuery(query);
}

Tainted input arrives from an untrusted source

Tainted input flows to a sensitive sink

Classic Example: SQL Injection

9

void processRequest() {
 String input = getUserInput();
 input = sanitizeInput(input);
 String query = "SELECT ... " + input;
 executeQuery(query);
}

Taint is removed by sanitizing the data

We can now safely execute query on
untainted data

Taint Checker: @Tainted and @Untainted

10

void processRequest() {
 @Tainted String input = getUserInput();
 executeQuery(input);
}

public void executeQuery(@Untainted String input) {
 // ...
}

@Untainted public String validate(String userInput) {
 // ...
}

Taint Checker: @Tainted and @Untainted

11

void processRequest() {
 @Tainted String input = getUserInput();
 executeQuery(input);
}

public void executeQuery(@Untainted String input) {
 // ...
}

@Untainted public String validate(String userInput) {
 // ...
}

Indicates that data is tainted

Argument must be untainted

Guarantees that return value is untainted

Taint Checker: @Tainted and @Untainted

12

void processRequest() {
 @Tainted String input = getUserInput();
 executeQuery(input);
}

public void executeQuery(@Untainted String input) {
 // ...
}

@Untainted public String validate(String userInput) {
 // ...
}

Indicates that data is tainted

Argument must be untainted

Guarantees that return value is untainted

Does this compile?

13

void processRequest() {
 @Tainted String input = getUserInput();
 input = validate(input);
 executeQuery(input);
}

public void executeQuery(@Untainted String input) {
 // ...
}

@Untainted public String validate(String userInput) {
 // ...
}

Input becomes @Untainted

Does this program compile?

14

void processRequest() {
 @Tainted String input = getUserInput();
 if (input.equals("little bobby drop tables")) {
 input = validate(input);
 }
 executeQuery(input);
}

Does this program compile? No.

15

void processRequest() {
 @Tainted String input = getUserInput();
 if (input.equals("little bobby drop tables")) {
 input = validate(input); // @Untainted
 }
 executeQuery(input); // @Tainted
}

16https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

Units Checker identifies physical unit inconsistencies

● Guarantees that operations are performed on the same kinds and units

● Kind annotations
○ @Acceleration, @Angle, @Area, @Current, @Length, @Luminance,

@Mass, @Speed, @Substance, @Temperature, @Time

● SI unit annotation
○ @m, @km, @mm, @kg, @mPERs, @mPERs2, @radians, @degrees, @A,

...

17https://www.nist.gov/pml/weights-and-measures/metric-si/si-units

18

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
 @m int x;
 x = 5 * m;

 @m int meters = 5 * m;
 @s int seconds = 2 * s;

 @mPERs int speed = meters / seconds;
 @m int foo = meters + seconds;
 @s int bar = seconds - meters;
}

19

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
 @m int x;
 x = 5 * m;

 @m int meters = 5 * m;
 @s int seconds = 2 * s;

 @mPERs int speed = meters / seconds;
 @m int foo = meters + seconds;
 @s int bar = seconds - meters;
}

@m indicates that x represents meters

To assign a unit, multiply
appropriate unit constant from
UnitTools

20

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
 @m int x;
 x = 5 * m;

 @m int meters = 5 * m;
 @s int seconds = 2 * s;

 @mPERs int speed = meters / seconds;
 @m int foo = meters + seconds;
 @s int bar = seconds - meters;
}

@m indicates that x represents meters

To assign a unit, multiply
appropriate unit constant from
UnitTools

Does this program compile?

21

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
 @m int x;
 x = 5 * m;

 @m int meters = 5 * m;
 @s int seconds = 2 * s;

 @mPERs int speed = meters / seconds;
 @m int foo = meters + seconds;
 @s int bar = seconds - meters;
}

@m indicates that x represents meters

To assign a unit, multiply
appropriate unit constant from
UnitTools

Does this program compile?

22

import static org.checkerframework.checker.units.UnitsTools.m;
import static org.checkerframework.checker.units.UnitsTools.mPERs;
import static org.checkerframework.checker.units.UnitsTools.s;

void demo() {
 @m int x;
 x = 5 * m;

 @m int meters = 5 * m;
 @s int seconds = 2 * s;

 @mPERs int speed = meters / seconds;
 @m int foo = meters + seconds;
 @s int bar = seconds - meters;
}

Does this program compile? No.

Addition and subtraction between
meters and seconds is physically

meaningless

Checker Framework: Limitations

● Can only analyze code that is annotated
○ Requires that dependent libraries are also annotated
○ Can be tricky, but not impossible, to retrofit annotations into existing codebases

● Only considers the signature and annotations of methods
○ Doesn’t look at the implementation of methods that are being called

● Beware of dynamically generated code!
○ Spring Framework

● Can produce false positives!
○ Byproduct of necessary approximations

What static analysis tools should I use?

The best QA strategies employ a combination of tools

25https://software-lab.org/publications/ase2018_static_bug_detectors_study.pdf

Dynamic analysis

Security and Robustness

2
7

Fuzz Testing

2
8

Communications of the ACM (1990)

“

”

Fuzz Testing

2
9

Input Program
Execute

w0o19[a%#
A 1990 study found crashes in:
adb, as, bc, cb, col, diction, emacs, eqn, ftp,
indent, lex, look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style, tsort, uniq,
vgrind, vi

/dev/random

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting, executing untrusted
code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-free,
assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

How to identify these bugs in languages like C/C++?

Strengths and Limitations

● Exercise: Write down two strengths and two weaknesses of fuzzing.
Bonus: Write down one or more assumptions that fuzzing depends on.

31

Strengths and Limitations

● Strengths:
○ Cheap to generate inputs

○ Easy to debug when a failure is identified

● Limitations:
○ Randomly generated inputs don’t make sense most of the time.

■ E.g. Imagine testing a browser and providing some ”input” HTML randomly:
dgsad5135o gsd;gj lsdkg3125j@!T%#(W+123sd asf j

○ Unlikely to exercise interesting behavior in the web browser

○ Can take a long time to find bugs. Not sure when to stop.

32

Mutation-Based Fuzzing (e.g. Radamsa)

33

Input
Pick

Input’
Random
Mutation Program

ExecuteInitial
Input

Input
Input

Input

Seeds

<foo></foo> <woo>?</oo>

Mutation Heuristics

▪ Binary input
▪ Bit flips, byte flips
▪ Change random bytes
▪ Insert random byte chunks
▪ Delete random byte chunks
▪ Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, 0, 1, -1,

…
▪ Text input

▪ Insert random symbols relevant to format (e.g. “<“ and “>” for xml)
▪ Insert keywords from a dictionary (e.g. “<project>” for Maven POM.xml)

▪ GUI input
▪ Change targets of clicks
▪ Change type of clicks
▪ Select different buttons
▪ Change text to be entered in forms
▪ … Much harder to design

Coverage-Guided Fuzzing (e.g. AFL)

Input
Pick

Input’
Random
Mutation Program

Execute

Save
?

Execution feedback

No

Yes

Add
Input’

Initial
Input

Input
Input

Input

Seeds

Coverage
Instrumentation

New
branch

coverage?

35

<foo></foo> <woo>?</oo>

How do you make programs “crash gracefully” when a bug is
encountered?

Now that you can do better than this:

Automatic Oracles: Sanitizers

● Address Sanitizer (ASAN) ***
● LeakSanitizer (comes with ASAN)
● Thread Sanitizer (TSAN)
● Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

AddressSanitizer
int get_element(int* a, int i) {
 return a[i];
}

int get_element(int* a, int i) {
 if (a == NULL) abort();
 return a[i];
}

int get_element(int* a, int i) {
 if (a == NULL) abort();
 region = get_allocation(a);
 if (in_heap(region)) {
 low, high = get_bounds(region);
 if ((a + i) < low || (a +i) > high) {
 abort();
 }
 }
 return a[i];
}

int get_element(int* a, int i) {
 if (a == NULL) abort();
 region = get_allocation(a);
 if (in_stack(region)) {
 if (popped(region)) abort();
 …
 }
 if (in_heap(region)) { ... }
 return a[i];
}

Is it null?

Is the access out of bounds?

Is this a reference to a stack-allocated variable after return?

Compile with clang
–fsanitize=address

AddressSanitizer

Asan is a memory error detector for C/C++. It finds:
○ Use after free (dangling pointer dereference)
○ Heap buffer overflow
○ Stack buffer overflow
○ Global buffer overflow
○ Use after return
○ Use after scope
○ Initialization order bugs
○ Memory leaks

https://github.com/google/sanitizers/wiki/AddressSanitizer

Slowdown about 2x on SPEC CPU 2006

Fast!

Testing
Performance

40

Performance Testing

● Goal: Identify performance bugs. What are these?
○ Unexpected bad performance on some subset of inputs
○ Performance degradation over time
○ Difference in performance across versions or platforms

● Not as easy as functional testing. What’s the oracle?
○ Fast = good, slow = bad // but what’s the threshold?
○ How to get reliable measurements?
○ How to debug where the issue lies?

41

Profiling

● Finding bottlenecks in execution time and memory
● Flame graphs are a popular visualization of resource consumption by call

stack.

42

Performance-driven Design

● Modeling and simulation
○ e.g. queuing theory

● Specify load distributions
and derive or test
configurations

43

Stress testing

● Robustness testing technique: test beyond the limits of normal operation.
● Can apply at any level of system granularity.
● Stress tests commonly put a greater emphasis on robustness, availability,

and error handling under a heavy load, than on what would be
considered “correct” behavior under normal circumstances.

44

Soak testing

● Problem: A system may behave exactly as expected under artificially
limited execution conditions.

○ E.g., Memory leaks may take longer to lead to failure (also motivates static/dynamic
analysis, but we’ll talk about that later).

● Soak testing: testing a system with a significant load over a significant
period of time (positive).

● Used to check reaction of a subject under test under a possible
simulated environment for a given duration and for a given threshold.

45

Testing Usability

46

Automating GUI/Web Testing

● This is hard

● Capture and Replay Strategy
○ mouse actions

○ system events

● Test Scripts: (click on button labeled "Start" expect value X in field Y)

● Lots of tools and frameworks
○ e.g. Selenium for browsers

47

Usability: A/B testing

● Controlled randomized experiment with two variants, A and B, which are
the control and treatment.

● One group of users given A (current system); another random group
presented with B; outcomes compared.

● Often used in web or GUI-based applications, especially to test advertising
or GUI element placement or design decisions.

48

Example

● A company sends an advertising email to its customer database, varying
the photograph used in the ad...

49

Example: group A (99% of users)

50

Act now!

Sale ends

soon!

Example: group B (1%)

51

Act now!
Sale ends
soon!

A/B Testing

● Requires good metrics and statistical tools to identify significant
differences.

● E.g. clicks, purchases, video plays
● Must control for confounding factors

52

Microservice Failures
and

Chaos Engineering

Slides credit: Christopher Meiklejohn

53

What kind of failures can happen here?

How likely is that error to happen?

How do I fix it?

Machine B

Microservice Application

54

Machine A

Doc Service

NodeBB App

Machine C

Recommendation
Service

Remember, these calls are messages
sent on an unreliable network.

Microservice

Process Call

Failures in Microservice Architectures

55

1. Network may be partitioned

2. Server instance may be down

3. Communication between services
may be delayed

4. Server could be overloaded and
responses delayed

5. Server could run out of memory or
CPU

Where Do We Start?

How do we even begin to test these scenarios?

Are there any techniques or software that can be used to test
these types of failures?

Chaos Engineering!

56

What is chaos engineering?
● "Chaos Engineering is the discipline of experimenting on a system in

order to build confidence in the system's capability to withstand

turbulent conditions in production.“

 principlesofchaos.org

57

Why would you break things on purpose?

58

Game Days

Purposely injecting failures into critical systems in order to:

● Identify flaws and “latent defects”
● Identify subtle dependencies (which may or may not lead to a flaw/defect)
● Prepare a response for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

59

Game Days

Large-scale applications are built on and with “unreliable” components

Failure is inevitable (fraction of percent; at Google scale, ~multiple times)

Goals:

● Preemptively trigger the failure, observe, and fix the error
● Script testing of previous failures and ensure system remains resilient
● Build the necessary relationships between teams before disaster strikes

60

Example: Amazon GameDay

61

Full data center destruction (Amazon EC2 region)

● No advanced notice of which data center will be taken offline
● No notice of when the data center will be taken offline
● Only advance notice (months) that a GameDay will be happening
● Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for
detecting errors and paging employees was located in the zone of the failure!

Not all failures can be actually
performed and must be simulated!

Other examples: Google

Terminate network in Sao Paulo for testing:
● Hidden dependency takes down links in Mexico which would have

remained undiscovered without testing

Turn off data center to find that machines won’t come back:
● Ran out of DHCP leases (for IP address allocation) when a large number of

machines come back online unexpectedly.

62

Netflix is another heavy cloud user…

Significant deployment in Amazon Web Services in order to remain
elastic in times of high and low load (first public, 100% w/o content delivery.)

Pushes code into production and modifies runtime configuration
hundreds of times a day

Key metric: availability

63

SPS is the
primary
indicator

of the system’s
overall health.

Chaos monkey/Simian army

● A Netflix infrastructure testing
system.

● “Malicious” programs randomly
trample on components,
network, data-centers, AWS
instances…

○ Force failure of components to make
sure that the system architecture is
resilient to unplanned/random
outages.

● Netflix has open-sourced their
chaos monkey code.

64

Exit Ticket

● What is the primary objective of fuzz testing in software development?
● primary goal of chaos engineering in the context of software systems?

