
CI and Cloud Computing
17-313 Fall 2025

Foundations of Software Engineering
https://cmu-17313q.github.io

Eduardo Feo Flushing

https://cmu-17313q.github.io/

Continuous Integration:

Catch mistakes before you push your code! 5

History of CI

(1999) Extreme Programming (XP) rule: “Integrate Often”

(2000) Martin Fowler posts “Continuous Integration” blog

(2001) First CI tool

(2005) Hudson/Jenkins

(2011) Travis CI

(2019) GitHub Actions

https://martinfowler.com/articles/continuousIntegration.html

Example CI Workflow

Source: https://innerjoin.bit.io/making-a-simple-data-pipeline-part-4-ci-cd-with-github-actions-733251f211a6

CI is triggered by commits, pull
requests, and other actions
Example: Small scale CI, with a service like CircleCI, GitHub
Actions or TravisCI

commits code to
Developer

GitHub

TravisCI

checks for updates

Runs build for each commit

GitHub
Actions

CircleCI

CI Research

9

“523 complete responses, and a total of 691 survey responses from over 30 countries. Over 50% of our
participants had over 10 years of software development experience, and over 80% had over 4 years of

experience.”

Do developers on projects with CI give (more/similar/less) value to automated tests?

10

Developers report:

Do developers on projects with CI give (more/similar/less) value to automated tests?
Do projects with CI have (higher/similar/lower) test quality?

11

Developers report:

Do developers on projects with CI give (more/similar/less) value to automated tests?
Do projects with CI have (higher/similar/lower) test quality?
Do projects with CI have (higher/similar/lower) code quality?

12

Developers report:

Do developers on projects with CI give (more/similar/less) value to automated tests?
Do projects with CI have (higher/similar/lower) test quality?
Do projects with CI have (higher/similar/lower) code quality?
Are developers on projects with CI (more/similar/less) productive?

13

Developers report:

Agile values fast quality feedback loops

Image source: https://sdtimes.com/devops/feedback-loops-are-a-prerequisite-for-continuous-improvement/

Attributes of effective CI processes
• Policies:

• Do not allow builds to remain broken
for a long time

• CI should run for every change
• CI should not completely replace

pre-commit testing

• Infrastructure:
• CI should be fast, providing feedback

within minutes or hours
• CI should be repeatable (deterministic)

Effective CI processes are run often
enough to reduce debugging effort
• Failed CI runs indicate a bug was
introduced, and caught in that
run

• More changes per-CI run require
more manual debugging effort to
assign blame

• A single change per-CI run
pinpoints the culprit

Challenge: Flaky Tests

17

“Google has around 4.2 million tests that run on our
continuous integration system. Of these, around 63
thousand have a flaky run over the course of a week”

https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html

Effective CI processes allocate enough resources
to mitigate flaky tests
• Flaky tests might be dependent on timing (failing due to
timeouts)

• Running tests without enough CPU/RAM can result in
increased flaky failure rates and unreliable builds

“The Effects of Computational Resources on Flaky Tests”, Silva et al

https://arxiv.org/abs/2310.12132

Cloud Computing enables Continuous
Integration and Deployment/Delivery

Cloud Computing
in a Nutshell

1970s Teleprocessing
Ph

o
to

 C
re

d
it

: U
n

iv
er

si
ty

 o
f

H
ei

d
el

b
er

g

Photo Credit: ArnoldReinhold, CC BY-SA 3.0 via Wikimedia
Commons

Photo Credit:
Wikipedia

https://creativecommons.org/licenses/by-sa/3.0
https://en.wikipedia.org/wiki/History_of_IBM_magnetic_disk_drives#/media/File:IBM_2311_memory_unit.JPG

1980s & 1990s Personal Computing

Photo Credit: Rama & Musée Bolo, CC BY-SA 2.0 FR, via Wikimedia
Commons

Photo Credit: Alexander Schaelss, CC BY-SA 3.0 via Wikimedia
Commons

https://creativecommons.org/licenses/by-sa/2.0/fr/deed.en
http://creativecommons.org/licenses/by-sa/3.0/

2000s Cloud Computing

Web
Server

McCarthy’s predictions
come true!

“Computing may someday be organized as a
public utility just as the telephone system is a
public utility…Each subscriber needs to pay only
for the capacity he actually uses, but he has
access to all programming languages
characteristic of a very large system …”

A traditional deployment of a Web Application

• Content delivery network: caches static
content “at the edge” (e.g. cloudflare,
Akamai)

• Web servers: Speak HTTP, serve static
content, load balance between app
servers (e.g. haproxy, traefik)

• App servers: Runs our application (e.g.
nodejs)

• Misc services: Logging, monitoring,
firewall

• Database servers: Persistent data

Content
Delivery
Network

Web
Servers

App
Servers

Database
servers

Web
App

What parts of this infrastructure can be shared across
different applications?

Content
Delivery
Network

Web
Servers

App
Servers

Database
servers

App 3

App 2

App 1

Company A

Company B

Company C

Multi-Tenancy creates economies of scale
• At the physical level:

• Multiple customers’ physical machines in the same data center
• Save on physical costs (centralize power, cooling, security, maintenance)

• At the physical server level:
• Multiple customers’ virtual machines in the same physical machine
• Save on resource costs (utilize marginal computing capacity – CPUs, RAM, disk)

• At the application level:
• Multiple customer’s applications hosted in same virtual machine
• Save on resource overhead (eliminate redundant infrastructure like OS)

• “Cloud” is the natural expansion of multi-tenancy at all levels

Cloud infrastructure scales elastically

• “Traditional” computing infrastructure requires capital investment
• “Scaling up” means buying more hardware, or maintaining excess

capacity for when scale is needed
• “Scaling down” means selling hardware, or powering it off

• Cloud computing scales elastically:
• “Scaling up” means allocating more shared resources
• “Scaling down” means releasing resources into a pool
• Billed on consumption (usually per-second, per-minute or per-hour)

Cloud services gives on-demand access
to infrastructure, “as a service”
• Vendor provides a service catalog of “X as a service” abstractions that provide

infrastructure as a service
• API allows us to provision resources on-demand
• Transfers responsibility for managing the underlying infrastructure to a vendor

Infrastructure as a Service: Virtual Machines
• Virtual machines:

• Virtualize a single large server into many smaller
machines

• Separates administration responsibilities for
physical machine vs virtual machines

• OS limits resource usage and guarantees quality
per-VM

• Each VM runs its own OS
• Examples:

• Cloud: Amazon EC2, Google Compute Engine,
Azure

• On-Premises: VMWare, Proxmox, OpenStack

Virtual Machines to Containers
• Each VM contains a full operating system

• What if each application could run in the same (overall) operating system? Why have
multiple copies?

● Advantages to smaller apps:
○ Faster to copy (and hence provision)
○ Consume less storage (base OS images are usually 3-10GB)

• Vendor supplies an
on-demand instance of an
operating system

• Eg: Linux version NN

• Vendor is free to implement
that instance in a way that
optimizes costs across many
clients.

CaaS: Containers as a Service

Hardware

ISA

Operating System
ISA+OS Calls

Container 2

App1

App1
Depend
encies

App2

App2
Depende

ncies

Container 1

App1

App1
Depend
encies

App2

App2
Depende

ncies

We don’t care what’s under here: it’s an
abstraction!

• Docker provides a
standardized interface for
your container to use

• Many vendors will host your
Docker container

• An open standard for
containers also exists (“OCI”)

Docker is the prevailing container platform

Hardware

ISA

Operating System
Docker

Container 2

App1

App1
Depend
encies

App2

App2
Depende

ncies

Container 1

App1

App1
Depend
encies

App2

App2
Depende

ncies

We don’t care what’s under here: it’s an
abstraction!

A container contains your apps and all
their dependencies
• Each application is encapsulated in a “lightweight container,”
includes:

• System libraries (e.g. glibc)
• External dependencies (e.g. nodejs)

• “Lightweight” in that container images are smaller than VM
images - multi tenant containers run in the OS

• Cloud providers offer “containers as a service”
(Amazon ECS Fargate, Azure Kubernetes,
Google Kubernetes)

Platform-as-a-Service: vendor supplies
OS + middleware
• Middleware is the stuff between our app and a user’s

requests:
• Content delivery networks: Cache static content
• Web Servers: route client requests to one of our app

containers
• Application server: run our handler functions in

response to requests from load balancer
• Monitoring/telemetry: log requests, response times

and errors

• Cloud vendors provide managed middleware platforms
too: “Platform as a Service”

Content
Delivery
Network

Web
Servers

App
Servers

Database
servers

Monitoring/
Telemetry

Clients

PaaS is often the simplest choice for
app deployment
• Platform-as-a-Service provides components most apps need, fully

managed by the vendor: load balancer, monitoring, application server

• Some PaaS run your app in a container: Heroku, AWS Elastic Beanstalk,
Google App Engine, Railway, Vercel…

• Other PaaS run your apps as individual functions/event handlers: AWS
Lambda, Google Cloud Functions, Azure Functions

• Other PaaSs provide databases and authentication, and run your
functions/event handlers: Google Firebase, Back4App

Physical data center

Network

Storage

Physical Server

Operating System

Middleware

Application

Virtualization

PaaS

Software as a Service
• Software that is fully built, deployed, and maintained by a

provider, and offered directly to end-users over the internet
(e.g., Gmail, Google Docs, Slack, Zoom)

• User Perspective:
• Access through a browser or app.
• No need to install, update, or manage servers.
• Pay as you go (subscription model).

The interesting engineering work happens at lower layers (IaaS or
PaaS), where you build and deploy software systems.

Cloud Computing: Analogy using NodeBB

Middleware

Cloud
Provides/Maintains

You
Provide/Maintain

Software as a
Service

Platform as a
Service

Infrastructure
as a Service

Container as a
Service sits

somewhere here

Cloud Infrastructure is best for variable
workloads
• Consider:

• Does your workload benefit from ability to scale up or down?
• Variable workloads have different demands over time (most common)
• Constant workloads require sustained resources (less common)

• Example:
• Need to run 300 VMs, each 4 vCPUs, 16GB RAM

• Private cloud:
• Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)
• 7 servers, each 128 cores, 512GB RAM, 3 TB storage = $162,104

• Public cloud:
• Amazon EC2 Pricing (M7a.xlarge instances, $0.153/VM-hour)
• 10 VMs for 1 year + 290 VMs for 1 month: $45,792.90
• 300 VMs for 1 year: $402,084.00

Public clouds are not the only option
• “Public” clouds are connected to the internet and available

for anyone to use
• Examples: Amazon, Azure, Google Cloud, DigitalOcean

• “Private” clouds use cloud technologies with on-premises,
self-managed hardware

• Cost-effective when a large scale of baseline resources are needed
• Example management software: OpenStack, VMWare, Proxmox,

Kubernetes
• “Hybrid” clouds integrate private and public (or multiple

public) clouds
• Effective approach to “burst” capacity from private cloud to public

cloud

