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Continuous Integration:

Catch mistakes before you push your code! 5



History of CI

(1999) Extreme Programming (XP) rule: “Integrate Often”

(2000) Martin Fowler posts “Continuous Integration” blog

(2001) First CI tool

(2005) Hudson/Jenkins

(2011) Travis CI 

(2019) GitHub Actions 

https://martinfowler.com/articles/continuousIntegration.html


Example CI Workflow

Source: https://innerjoin.bit.io/making-a-simple-data-pipeline-part-4-ci-cd-with-github-actions-733251f211a6



CI is triggered by commits, pull 
requests, and other actions
Example: Small scale CI, with a service like CircleCI, GitHub 
Actions or TravisCI

commits code to
Developer

GitHub

TravisCI

checks for updates

Runs build for each commit

GitHub
Actions

CircleCI



CI Research

9

“523 complete responses, and a total of 691 survey responses from over 30 countries. Over 50% of our 
participants had over 10 years of software development experience, and over 80% had over 4 years of 

experience.”



Do developers on projects with CI give (more/similar/less) value to automated tests?
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Developers report:



Do developers on projects with CI give (more/similar/less) value to automated tests?
Do projects with CI have (higher/similar/lower) test quality? 

11

Developers report:



Do developers on projects with CI give (more/similar/less) value to automated tests?
Do projects with CI have (higher/similar/lower) test quality? 
Do projects with CI have (higher/similar/lower) code quality?
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Developers report:



Do developers on projects with CI give (more/similar/less) value to automated tests?
Do projects with CI have (higher/similar/lower) test quality? 
Do projects with CI have (higher/similar/lower) code quality?
Are developers on projects with CI (more/similar/less) productive?
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Developers report:



Agile values fast quality feedback loops

Image source: https://sdtimes.com/devops/feedback-loops-are-a-prerequisite-for-continuous-improvement/



Attributes of effective CI processes
• Policies:

• Do not allow builds to remain broken 
for a long time

• CI should run for every change
• CI should not completely replace 

pre-commit testing

• Infrastructure:
• CI should be fast, providing feedback 

within minutes or hours
• CI should be repeatable (deterministic)



Effective CI processes are run often 
enough to reduce debugging effort
• Failed CI runs indicate a bug was 
introduced, and caught in that 
run

• More changes per-CI run require 
more manual debugging effort to 
assign blame

• A single change per-CI run 
pinpoints the culprit



Challenge: Flaky Tests
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“Google has around 4.2 million tests that run on our 
continuous integration system. Of these, around 63 
thousand have a flaky run over the course of a week”

https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html



Effective CI processes allocate enough resources 
to mitigate flaky tests
• Flaky tests might be dependent on timing (failing due to 
timeouts)

• Running tests without enough CPU/RAM can result in 
increased flaky failure rates and unreliable builds

“The Effects of Computational Resources on Flaky Tests”, Silva et al

https://arxiv.org/abs/2310.12132


Cloud Computing enables Continuous 
Integration and Deployment/Delivery



Cloud Computing
in a Nutshell
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Photo Credit: ArnoldReinhold, CC BY-SA 3.0 via Wikimedia 
Commons

Photo Credit: 
Wikipedia

https://creativecommons.org/licenses/by-sa/3.0
https://en.wikipedia.org/wiki/History_of_IBM_magnetic_disk_drives#/media/File:IBM_2311_memory_unit.JPG


1980s & 1990s Personal Computing

Photo Credit: Rama & Musée Bolo, CC BY-SA 2.0 FR, via Wikimedia 
Commons

Photo Credit: Alexander Schaelss, CC BY-SA 3.0 via Wikimedia 
Commons

https://creativecommons.org/licenses/by-sa/2.0/fr/deed.en
http://creativecommons.org/licenses/by-sa/3.0/


2000s Cloud Computing

Web
Server

McCarthy’s predictions 
come true!

“Computing may someday be organized as a 
public utility just as the telephone system is a 
public utility…Each subscriber needs to pay only 
for the capacity he actually uses, but he has 
access to all programming languages 
characteristic of a very large system …”



A traditional deployment of a Web Application

• Content delivery network: caches static 
content “at the edge” (e.g. cloudflare, 
Akamai)

• Web servers: Speak HTTP, serve static 
content, load balance between app 
servers  (e.g. haproxy, traefik)

• App servers: Runs our application (e.g. 
nodejs)

• Misc services: Logging, monitoring, 
firewall

• Database servers: Persistent data

Content 
Delivery 
Network

Web 
Servers

App 
Servers

Database 
servers

Web 
App



What parts of this infrastructure can be shared across 
different applications?

Content 
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Multi-Tenancy creates economies of scale
• At the physical level:

• Multiple customers’ physical machines in the same data center
• Save on physical costs (centralize power, cooling, security, maintenance)

• At the physical server level:
• Multiple customers’ virtual machines in the same physical machine
• Save on resource costs (utilize marginal computing capacity – CPUs, RAM, disk)

• At the application level:
• Multiple customer’s applications hosted in same virtual machine
• Save on resource overhead (eliminate redundant infrastructure like OS)

• “Cloud” is the natural expansion of multi-tenancy at all levels



Cloud infrastructure scales elastically

• “Traditional” computing infrastructure requires capital investment
• “Scaling up” means buying more hardware, or maintaining excess 

capacity for when scale is needed
• “Scaling down” means selling hardware, or powering it off

• Cloud computing scales elastically:
• “Scaling up” means allocating more shared resources
• “Scaling down” means releasing resources into a pool
• Billed on consumption (usually per-second, per-minute or per-hour)



Cloud services gives on-demand access 
to infrastructure, “as a service”
• Vendor provides a service catalog of “X as a service” abstractions that provide 

infrastructure as a service
• API allows us to provision resources on-demand
• Transfers responsibility for managing the underlying infrastructure to a vendor



Infrastructure as a Service: Virtual Machines
• Virtual machines:

• Virtualize a single large server into many smaller 
machines

• Separates administration responsibilities for 
physical machine vs virtual machines

• OS limits resource usage and guarantees quality 
per-VM

• Each VM runs its own OS
• Examples:

• Cloud: Amazon EC2, Google Compute Engine, 
Azure

• On-Premises: VMWare, Proxmox, OpenStack



Virtual Machines to Containers
• Each VM contains a full operating system

• What if each application could run in the same (overall) operating system? Why have 
multiple copies?

● Advantages to smaller apps:
○ Faster to copy (and hence provision)
○ Consume less storage (base OS images are usually 3-10GB)



• Vendor supplies an 
on-demand instance of an 
operating system

• Eg: Linux version NN

• Vendor is free to implement 
that instance in a way that 
optimizes costs across many 
clients.

CaaS: Containers as a Service
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abstraction!



• Docker provides a 
standardized interface for 
your container to use

• Many vendors will host your 
Docker container

• An open standard for 
containers also exists (“OCI”)

Docker is the prevailing container platform
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A container contains your apps and all 
their dependencies
• Each application is encapsulated in a “lightweight container,” 
includes:

• System libraries (e.g. glibc)
• External dependencies (e.g. nodejs)

• “Lightweight” in that container images are smaller than VM 
images - multi tenant containers run in the OS

• Cloud providers offer “containers as a service” 
(Amazon ECS Fargate, Azure Kubernetes, 
Google Kubernetes)





Platform-as-a-Service: vendor supplies 
OS + middleware
• Middleware is the stuff between our app and a user’s 

requests:
• Content delivery networks: Cache static content
• Web Servers: route client requests to one of our app 

containers
• Application server: run our handler functions in 

response to requests from load balancer
• Monitoring/telemetry: log requests, response times 

and errors

• Cloud vendors provide managed middleware platforms 
too: “Platform as a Service”
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PaaS is often the simplest choice for 
app deployment
• Platform-as-a-Service provides components most apps need, fully 

managed by the vendor: load balancer, monitoring, application server

• Some PaaS run your app in a container: Heroku, AWS Elastic Beanstalk, 
Google App Engine, Railway, Vercel…

• Other PaaS run your apps as individual functions/event handlers: AWS 
Lambda, Google Cloud Functions, Azure Functions

• Other PaaSs provide databases and authentication, and run your 
functions/event handlers: Google Firebase, Back4App

Physical data center

Network

Storage

Physical Server

Operating System

Middleware
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Virtualization
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Software as a Service
• Software that is fully built, deployed, and maintained by a 

provider, and offered directly to end-users over the internet 
(e.g., Gmail, Google Docs, Slack, Zoom)

• User Perspective:
• Access through a browser or app.
• No need to install, update, or manage servers.
• Pay as you go (subscription model).

The interesting engineering work happens at lower layers (IaaS or 
PaaS), where you build and deploy software systems.



Cloud Computing: Analogy using NodeBB

Middleware
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somewhere here



Cloud Infrastructure is best for variable 
workloads
• Consider: 

• Does your workload benefit from ability to scale up or down?
• Variable workloads have different demands over time (most common)
• Constant workloads require sustained resources (less common)

• Example: 
• Need to run 300 VMs, each 4 vCPUs, 16GB RAM

• Private cloud: 
• Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)
• 7 servers, each 128 cores, 512GB RAM, 3 TB storage = $162,104

• Public cloud: 
• Amazon EC2 Pricing (M7a.xlarge instances, $0.153/VM-hour)
• 10 VMs for 1 year + 290 VMs for 1 month: $45,792.90
• 300 VMs for 1 year: $402,084.00



Public clouds are not the only option
• “Public” clouds are connected to the internet and available 

for anyone to use
• Examples: Amazon, Azure, Google Cloud, DigitalOcean

• “Private” clouds use cloud technologies with on-premises, 
self-managed hardware

• Cost-effective when a large scale of baseline resources are needed
• Example management software: OpenStack, VMWare, Proxmox, 

Kubernetes
• “Hybrid” clouds integrate private and public (or multiple 

public) clouds
• Effective approach to “burst” capacity from private cloud to public 

cloud


