

Software Engineering for ML/AI

17-313, Foundations of Software Engineering, Fall 2023

(based on the slides of 17-445 by Christian Kästner)

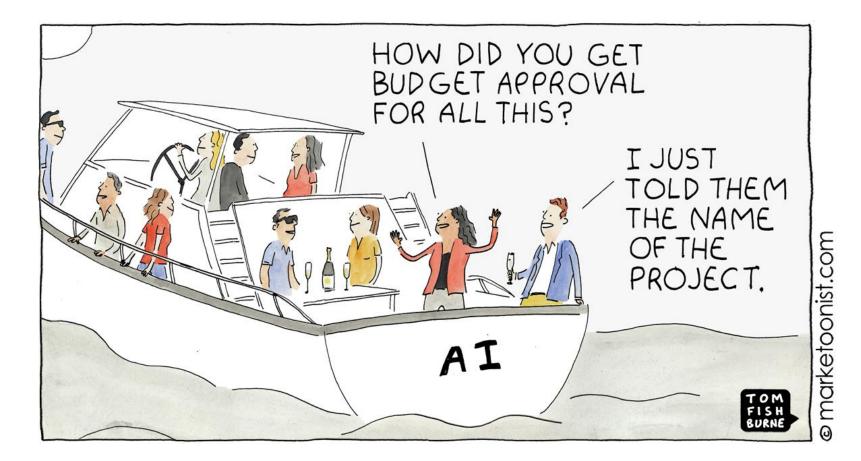
Learning goals

- Understand how machine learning (ML) components are parts of larger systems
- Explain the typical machine learning process
- Illustrate the challenges in engineering an ML-enabled system beyond accuracy
- Key differences from traditional software
- Illustrate the challenges in engineering an AI-enabled system beyond accuracy

Software Engineering For AI/ML

Why?

Navigating the AI Hype



53D

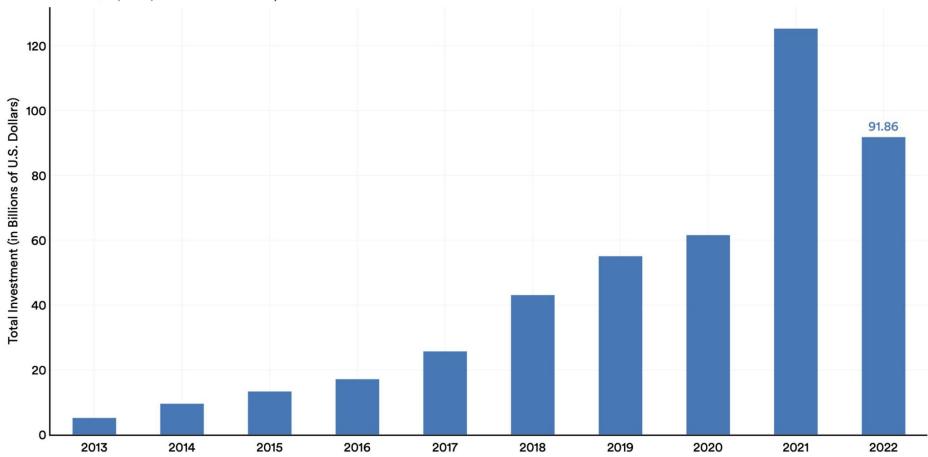
2014

WHEN A USER TAKES A PHOTO, THE APP SHOULD CHECK WHETHER THEY'RE IN A NATIONAL PARK ... SURE, EASY GIS LOOKUP. GIMME A FEW HOURS. ... AND CHECK WHETHER THE PHOTO IS OF A BIRD. I'LL NEED A RESEARCH TEAM AND FIVE YEARS.

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

... a few years later

Private Investment in AI, 2013–22 Source: NetBase Quid, 2022 | Chart: 2023 AI Index Report



S3D

Outline

- Traditional Programing vs. ML
- Case Studies
- Model-Centric Pipeline: ML Basics
 - Features
 - Model Building
 - Evaluation
- Using ML as part of a system
 - Are there any new challenges?
 - ML Ops

Traditional Programming vs ML

Traditional Programming

Machine Learning

Traditional Programming

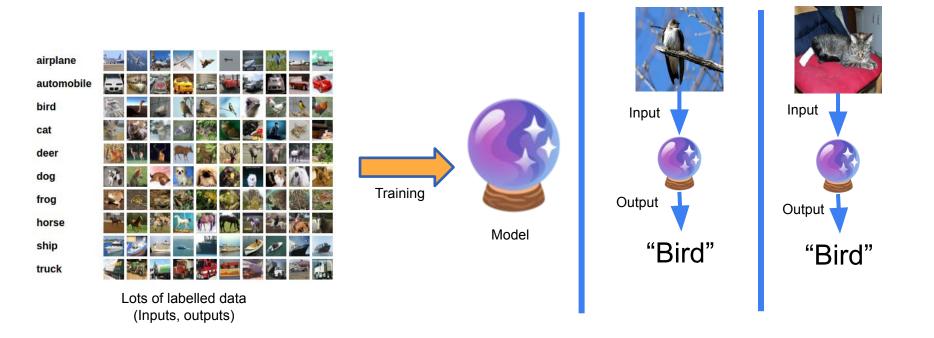
"It is easy. You just chip away the stone that doesn't look like David." –(probably not) Michelangelo

ML Development

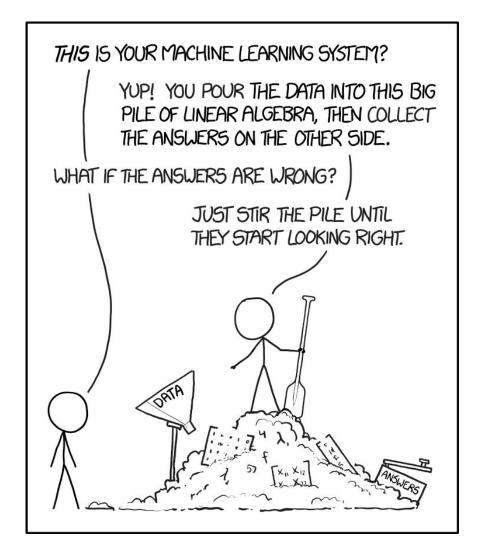
- Observation
- Hypothesis
- Predict
- Test
- Reject or Refine Hypothesis

Machine Learning in One Slide

(Supervised)



Black-box view of ML



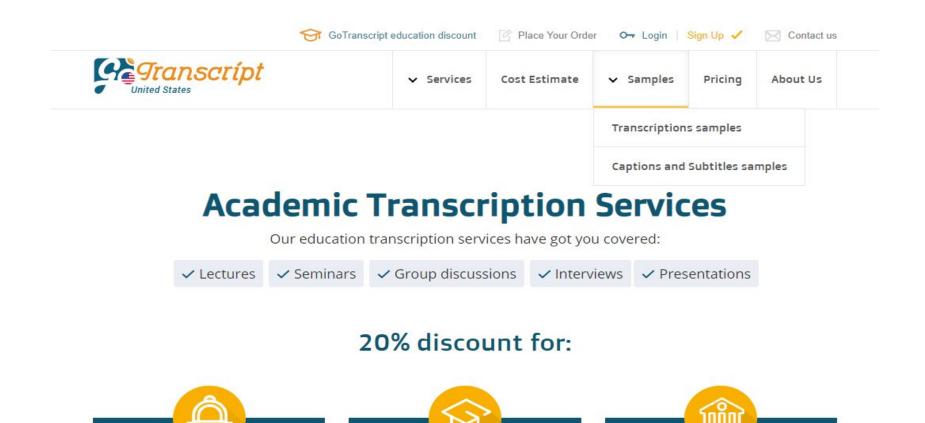
Outline

- Traditional Programing vs. ML
- Case Studies
- Model-Centric Pipeline: ML Basics
 - Features
 - Model Building
 - Evaluation
- Using ML as part of a system
 - Are there any new challenges?
 - ML Ops

Outline

- Traditional Programing vs. ML
- Case Studies
- Model-Centric Pipeline: ML Basics
 - Features
 - Model Building
 - Evaluation
- Using ML as part of a system
 - Are there any new challenges?
 - ML Ops

Case Study: The Transcription Service Startup



Chat with us

Transcription Services

Take audio or video files and produce text.

Used by academics to analyze interview text

- Podcast show notes
- Subtitles for videos
- State of the art: Manual transcription, often mechanical turk (1.5 \$/min)

The Startup Idea

- Ph.D. research on domain-specific speech recognition that can detect technical jargon
- DNN trained on public PBS interviews + transfer learning on smaller manually annotated domain-specific corpus
- Research has shown excellent accuracy for talks in medicine, poverty and inequality research, and talks at Ruby programming conferences; published at top conferences
- Idea: Let's commercialize the software and sell it to academics and conference organizers

Team Discussion: Likely challenges in building commercial product?

- Think about challenges that the team will likely focus on when turning their research into *a product*:
 - One machine-learning challenge
 - One engineering challenge in building the product
 - One challenge in operating and updating the product
 - One team or management challenge
 - One business challenge
 - One safety or ethics challenge

Transcription Services

What qualities are important for a good commercial transcription product?

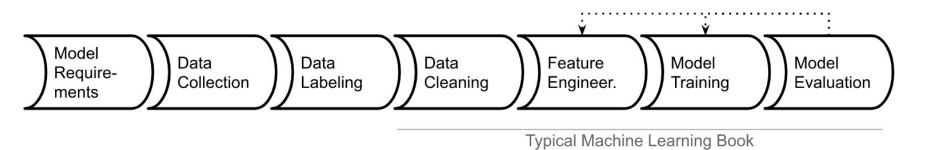
Case study: Smart IoT Parking Sensor

Case Study: Surge Prediction App

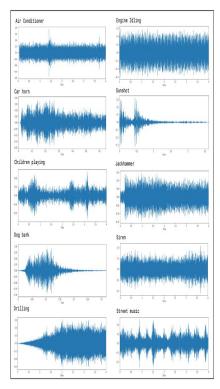
Outline

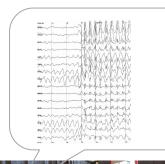
- Traditional Programing vs. ML
- Case Studies
- Model-Centric Pipeline: ML Basics
 - Features
 - Model Building
 - Evaluation
- Using ML as part of a system
 - Are there any new challenges?
 - ML Ops

ML 101: Model-centric pipeline



Example Data





Model Parama	Criene' My Hand Writing (pg		Nodel 0 B	lobs selected			Hower controls for toollips		
L	ł-	F						 Show Briefard Image Show Raws 	
G	9	1	9	90	9	4	9	Bnarization Theshold:	
đ	d	9	d	d	0	${\mathbf d}$	0	Heght Herge Senativity: Width Herge Senativity:	
1	1		N	1-1		1		The Marga Fiber Size:	10 0
h	h	5	5	h	h	n	h		100 0
Ŷ	1	ľ		ť	ý	ľ	i -	More Selected Blobs Herval: 2 0	
j	Ĵ	j	S	j	5	i	J		
k	k	10 A	k	X	*	K	\sim	Eport Eport Size (W/H): [2] Output	- (¢
1	I	1	I		L	l	l	Equot Bobs	
M	3	M	m	M	M	M	MA		

UserId	PickupLocation	TargetLoc ation	OrderTime	PickupTime
5			18:23	18:31

age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	disease
63	M	3	145	233	1	0	150	0	2.3	0	0	1	Y
37	M	2	130	250	0	1	187	0	3.5	0	0	2	Y
41	F	1	130	204	0	0	172	0	1.4	2	0	2	Y
56	M	1	120	236	0	1	178	0	0.8	2	0	2	N
57	F	0	120	354	0	1	163	1	0.6	2	0	2	Y
57	M	0	140	192	0	1	148	0	0.4	1	0	1	Y
56	F	1	140	294	0	0	153	0	1.3	1	0	2	N
44	M	1	120	263	0	1	173	0	0	2	0	3	N
52	M	2	172	199	1	1	162	0	0.5	2	0	3	N
57	M	2	150	168	0	1	174	0	1.6	2	0	2	Y
54	M	0	140	239	0	1	160	0	1.2	2	0	2	N
48	F	2	130	275	0	1	139	0	0.2	2	0	2	Y
49	M	1	130	266	0	1	171	0	0.6	2	0	2	Y

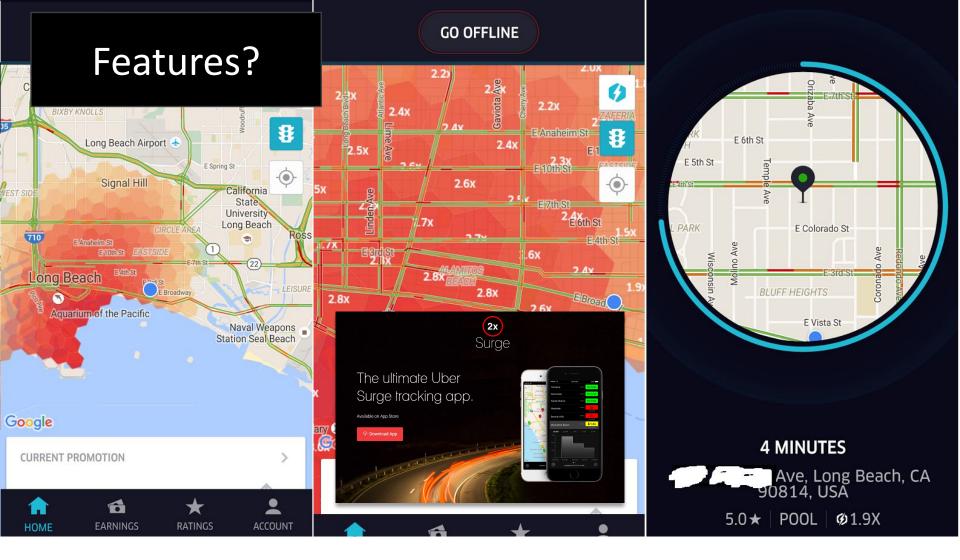
Data Cleaning

Removing outliers

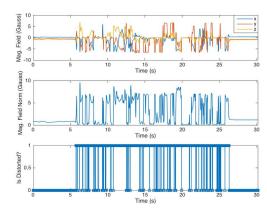
- Normalizing data
- Missing values

Feature Engineering

- Convert raw data into a functional form
 - Transform raw data into a more compact representation that captures the most important information in the data.
- Improve the performance of models by focusing on the most relevant information in the data
 - Remove misleading things







Feature Extraction

In surge prediction:

- \bigcirc Location and time of past surges
- Events
- Number of people traveling to an area
- Typical demand curves in an area
- O Demand in other areas
- Weather

Feature Extraction

- In vehicle detection:
 - Moving window averages
 - Peaks
 - Weather
 - Sound
 - \bigcirc Time of day
 - Current parking lot occupancy
 - Weather

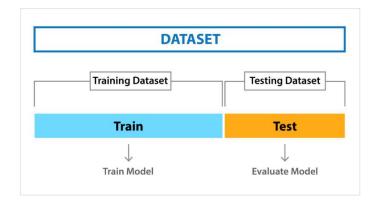
Model Building

- Build a predictor that best describes an outcome for the observed features
- Many algorithms: Linear Regression, Logistic Regression, Probabilistic models, Decision Trees, Support Vector Machines, Gaussian Processes, Neural Networks

Prediction accuracy on learned data vs. Prediction accuracy on unseen data

Why?

- Prediction accuracy on learned data vs. Prediction accuracy on unseen data
 - \bigcirc Separate learning set, not used for training



Binary classification: Positive / Negative

Possible classification outcomes:

0	TN: True Negatives	Actual Class	Predicted Class		
0	TP: True Positives		Negative	Positive	
0	FN: False Negatives	Negative Positive	TN FN	FP TP	

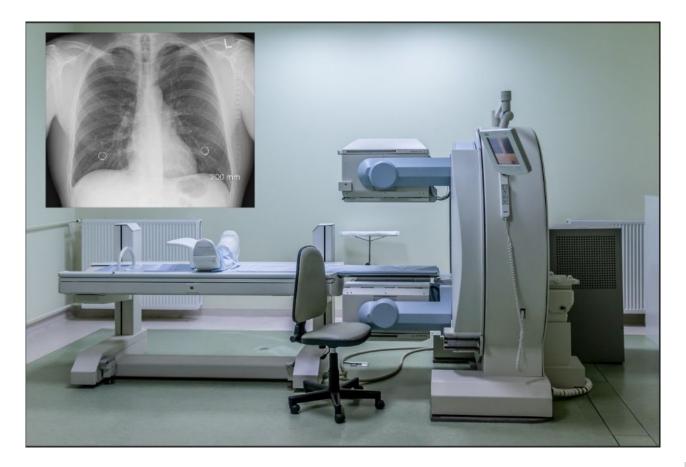
• FP: False Positives

Accuracy is calculated as the total number of two correct predictions (TP + TN) divided by the total number of a dataset (TP + TN + FP + FN).

. . . .

Evaluation: is model accuracy enough?

Are false positives and false negatives equally bad?



False positives and false negatives, equally bad?

• Recognizing cancer

- Suggesting products to buy on e-commerce site
- Identifying human trafficking at the border
- Predicting high demand for ride sharing services
- Predicting recidivism chance
- Approving loan applications

- Prediction accuracy on learned data vs. Prediction accuracy on unseen data
 - Separate learning set, not used for training
- For binary predictors: false positives vs. false negatives, recall, precision
- For numeric predictors: average (relative) distance between actual and predicted value

Outline

- Traditional Programing vs. ML
- Case Studies
- Model-Centric Pipeline: ML Basics
 - Features
 - Model Building
 - Evaluation
- Why ML/AI projects fail?
 - What's wrong with the model-centric pipeline?
 - Are there any new challenges?
 - ML Ops

