
Continuous Deployment
17-313 Fall 2025

Foundations of Software Engineering
https://cmu-17313q.github.io

Eduardo Feo Flushing 

https://cmu-17313q.github.io/


Continuous Delivery: Why?
“The biggest risk to any software effort is that you end up building something that 
isn’t useful. The earlier and more frequently you get working software in front of 
real users, the quicker you get feedback to find out how valuable it really is.”

Martin Fowler, Continuous Delivery





Motivating scenario: Failed Deployment at 
Knight Capital

“In the week before go-live, a Knight engineer manually deployed 
the new RLP code in SMARS to its 8 servers. However, he made a 
mistake and did not copy the new code to one of the servers. 
Knight did not have a second engineer review the deployment, 
and neither was there an automated system to alert anyone to 
the discrepancy. “

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html 

“It took 17 years of dedicated work to build Knight Capital Group 
into one of the leading trading houses on Wall Street. And it all 
nearly ended in less than one hour.”

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html


What could Knight capital have done 
better?

•Avoid including “test” and “dead” code in production deployments

•Automate deployments

•Define and monitor risk-based KPIs

•Create checklists for responding to incidents (Risk Management!)



CI/CD Pipeline overview

Code Edit Tests Run

Code Merged
Code 

Deployed



Example CI/CD Workflow



Continuous Delivery != Immediate Delivery

• Even if you are deploying every day (“continuously”), you still 
have some latency

• A new feature I develop today won't be released today

•But, a new feature I develop today can begin the release 
pipeline today (minimizes risk)

• Release Engineer: gatekeeper who decides when something 
is ready to go out, oversees the actual deployment process



How can we continuously 
deploy our software in 
production?
Continuous Deployment / Continuous Delivery



Continuous 
Delivery 
/Deployment
Done right

https://docs.google.com/file/d/1WUHGtElMq0HKOYuLl6e-76ad0ZXpV9hI/preview


Continuous Delivery

• “Faster is safer”: Key values of continuous delivery
• Release frequently, in small batches
• Maintain key performance indicators to evaluate the impact of updates
• Phase roll-outs
• Evaluate business impact of new features



Split Deployments Mitigate Risk
• Idea: Deploy to a complete production-like environment, but 
don't have users use it, collect preliminary feedback
•Lower risk if a problem occurs in staging than in production
•Examples:

• “Dogfooding” “Eat your own dogfood”
• Beta/Alpha testers



Staging Environments for Continuous 
Delivery 

Testing 
Environment

Staging Environment Production Environment

Beta/Dogfooding User Requests
Developer 

Environments

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)



Continuous Delivery Tools
• Simplest tools deploy from a branch to a service (e.g. Vercel. 

Render.com, Heroku)

• More complex tools:
• Auto-deploys from version control to a staging environment + promotes 

through release pipeline
• Monitors key performance indicators to automatically take corrective actions

Example CD pipeline from Spinnaker’s documentation: 
https://spinnaker.io/docs/concepts/#application-deployment 

https://spinnaker.io/docs/concepts/#application-deployment


Continuous Delivery Needs Monitoring
• Consider both direct (e.g. business) metrics, and indirect (e.g. system) metrics

• Hardware

• Voltages, temperatures, fan speeds, component health

• OS

• Memory usage, swap usage, disk space, CPU load

• Middleware

• Memory, thread/db connection pools, connections, response time

• Applications

• Business transactions, conversion rate, status of 3rd party components, logs



Monitoring can help identify operational issues

Grafana (AGPL, c 2014) InfluxDB (MIT license, c 2013)



 Cloud Monitoring as a Service



Continuous Delivery Tools Take 
Automated Actions
•Example: Automated roll-back of updates at Netflix based 
on SPS

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag


Activity: Try CD by yourself
1. Fork this repo: 

https://github.com/CMU-17313Q/basic-web-app-f25

2. Follow the instructions in the readme to run and test the 
development server locally.

3. Once you have it running locally visit http://localhost:3000 and 
try different queries like Who was Shakespeare? and What is your 
Andrew ID?

4. Complete the activity tasks following the instructions in 
cmu-17313q.github.io/recitations/deployment-workshop-f25/

5. Submit a link to the deployed site (link on Slack)

https://github.com/CMU-17313Q/basic-web-app-f25
https://cmu-17313q.github.io/recitations/deployment-workshop-f25
https://cmu-17313q.github.io/recitations/deployment-workshop-f25





