Software Quality

17-313 Fall 2025
Foundations of Software Engineering
https://cmu-17313qg.github.io
Eduardo Feo Flushing

Sources:
e Effective Software Testing: A developer's guide. Maurizio Aniche
e Software Quality and Testing - TU Delft
e Introduction to Combinatorial Testing. Rick Kuhn

S3D Vellons

Universi

https://cmu-17313q.github.io/

Administrivia

e P4 is out

Smoking Section

el ast two full rows

DESIGNATED
SMOKING
AREA

Learning Goals

S3D

Understand the concepts of software quality and technical
debt

Reflect on personal experiences of technical debt

Learn best practices for proactively ensuring quality

Learn techniques for creating functional tests

Explain the importance of technical debt management
Learn techniques for managing technical debt

Carnegie
Mellon
Universi

Software Quality

Carnegie
Mellon

Universi

Internal Quality External Quality

e |s the code well structured? Does the software crash?
e |s the code understandable? * Does it meet the requirements?
e How well documented? * Is the Ul well designed?

S3D Vellogt

Universi

The device driver

Prob ey with o) qu"":f
Ardvarg r‘:r;"]’;” Teself o In N
X with
Technicay Informay

Please cheg Your mmure device Vendor o oy &
fon:

*** STo4 0x000000g, Coxa

ati2dyy,
Beginning dump of Physical memory

ting MPERORbi!Qiiiﬁf*ﬁ

lity : e
al qua

i extern

Assuring

L

90F2020, OxB936048q, Omasizeac, o

rnegie
g/[%llon .
Universi

Terminology

Failure:

“Deviation of the component or system
from its expected delivery, service or
result”

“Manifested inability of a system to
perform required function”

S3D o

Universi

Terminology

Fault / Defect:

“Flaw in component or system that can cause the component or
system to fail to perform its required function”

“A defect, if encountered during execution, may cause a failure of
the component or system”

S3D et

Universi

Terminology

Error:

“A human action that produces an incorrect result”

S3D Vellons

Universi

Terminology

Failure:

Manifested inability of a system to perform
required function.

Defect (fault):)
missing / incorrect code
: > Bug
Error (mistake)
human action producing fault
And thus:

Testing: Attempt to trigger failures
Debugging: Attempt to find faults given a failure

S3D Vellons

Universi

Principles of Testing #1:
Avoid the absence of defects tallacy

Testing shows the presence of defects

Testing does not show the absence of defects!
“no test team can achieve 100% defect detection |
effectiveness”

Effective Software Testing: A developer's guide. Maurizio Aniche

S3D Vellons

Universi

Principles of Testing #2:
Exhaustive testing is impossible

1 def is_valid_email(email: str) -> bool:

2

o A simple function, 1 All oceans dry All tests done
~8 billion years

input, string, max. 26 All plants dead
lowercase characters

Life Cycle
+ SymbO|S (@, ey —) of the Sun

e Assume we can use 1

zettaFLOPS: 104 A
teStS per Second In Billions of Years (approx.)

Effective Software Testing: A developer's guide. Maurizio Aniche

Universi

Principles of Testing #3:
Start testing early

. To let tests guide design

. To get feedback as early as possible

. To find bugs when they are cheapest to fix

- To find bugs when have caused least damage

Effective Software Testing: A developer's guide. Maurizio Aniche

Universi

Principles of Testing #4.
Defects are usually clustered

. "Hot” components requiring frequent change, bad habits,
poor developers, tricky logic, business uncertainty,
innovative, size, ...

Use as heuristic to focus test effort

Effective Software Testing: A developer's guide. Maurizio Aniche

Universi

Principles of Testing #5:
The pesticide paradox

“Every method you use to prevent or find bugs leaves a residue of
subtler bugs against which those methods are ineffectual.”

Re-running the same test suite again and again on a
changing program gives a false sense of security
- Variation in testing

Effective Software Testing: A developer's guide. Maurizio Aniche

S3D

Carnegie
Mellon

Universi

Principles of Testing #6:
Testing is context-dependent

HANDS-ON
MOBILE APP

TESTING HOW SAFE IS
SAFE ENOUGH?

Measuring and Predicting TESTING
Autonomous Vehicle Safety , ALL IN ONE

lllllll

Carnegie
Mellon
Universi

Principles of Testing #7:
Verification is not validation

Verification

VERIFICATION VALIDATION

Does the software system meet the
requirements specifications?
Are we building the software right?

Validation

Does the software system meet the
user's real needs?
Are we building the right software?

Image Credit: Philip Koopman
Effective Software Testing: A developer's guide. Maurizio Aniche

Universi

How to create tests?

Test design techniques

e Opportunistic/exploratory testing: Add some unit tests, without
much planning

e Structural testing ("white box"): Derive test cases to cover
implementation paths
o Line coverage, branch coverage

mm)e Specification-based testing ("black box"): Derive test cases from

specifications
o Boundary value analysis
o Equivalence classes
o Combinatorial testing
o Random testing

S3D o

Universi

Specification Testing

Tests are based on the specification
Advantages:

- Avoids implementation bias
Robust to changes in the implementation
. Tests don't require familiarity with the code
. Tests can be developed before the implementation

S3D T

Universi

W ~1 o U1 > W NP

www

Compute the price of a bus ride:

www

def

Base fare is $3

Children under 2 ride for free

People under 18 and senior citizens over 65
On weekdays (Monday to Friday), between 7am
and between 4pm and 6pm a peak surcharge of
Short trips under S5min during off-peak time
except on weekends.

busTicketPrice (age: 1int,
ride_datetime: datetime,

ride_duration: int) -> float:

pay half the fare

and %am
S1.5 is added.
are free,

Carnegie

Mellon

Universi

What about exhaustive testing?

Idea: Try all values!

. age:int (2-117)years
. ride datetime: dateTime (hh:mm + M/D/Y)
- ride duration: int (in minutes, 1 - 2 Hours)

116 x 1440 (minutes per day) x 1826 (days in the next 5 years)
X 120 (ride time)

~ 36 Billion test cases

S3D Vellons

Universi

What about exhaustive testing?

Exhaustive testing is usually impractical - even for trivially
small problem

Key problem: choosing test suite

. Small enough to finish in a useful amount of time
Large enough to provide a useful amount of validation

Alternative: Heuristics

S3D o

Universi

Equivalence Partitioning

Identify sets with same behavior (equivalence class)
. Try one input from each set

Equivalence classes derived from specifications (e.g.,

cases, input ranges, error conditions, fault models)

Requires domain-knowledge

S3D o

Universi

Example: Equivalence Classes?

www

W ~1 o U1 > W DN B

10 mwww
11 def

Compute the price of a bus ride:

Base fare is §3

Children under 2 ride for free

People under 18 and senior citizens over 65
On weekdays (Monday to Friday), between 7am
and between 4pm and 6pm a peak surcharge of
Short trips under 5min during off-peak time
except on weekends.

busTicketPrice (age: int,
ride_datetime: datetime,
ride_duration: int) -> float:

pay half the fare
and 2am

$1.5 is added.
are free,

Carnegie
Mellon
Universi

The category-partition method

ldentify the parameters

. The domains of each parameter
From the specs
Not from the specs

. Add constraints (minimize)
Remove invalid combinations

Reduce number of exceptional behaviors
Generate combinations

S3D Vellons

Universi

O ~1 O U1 W NP

www

The category-partition method

Compute the price of a bus ride:

www

def

Base fare is $3

Children under 2 ride for free

People under 18 and senior citizens over 65
On weekdays (Monday to Friday), between 7am
and between 4pm and 6pm a peak surcharge of
Short trips under 5min during off-peak time
except on weekends.

busTicketPrice (age: int,
ride_datetime: datetime,

ride_duration: int)} -> float:

pay half the fare
and %am

$1.5 is added.
are free,

Variable

Domains

age

<2,[2,17], [18,65], >65

ride_datetime

date: (weekdays, weekends)
time: (peak and off-peak)

ride_duration

<5, >=5

Carnegie

Mellon
Universi

Boundary-value analysis

Key Insight: Errors often occur at the boundaries of a variable
value

For each variable, select:
minimum,
min+1,
medium,
max-1,
maximum:;
possibly also invalid values min-1, max+1

S3D Vellons

Universi

Boundary-value analysis

QO ~I o O W NP

10 www
11 def

Compute the price of a bus ride:

Base fare is $§3

Children Under 2 tride for free

People under 18 and senior citizens over 65 pay half the fare
On weekdays (Monday to Friday), between 7am and %am

and between 4pm and 6pm a peak surcharge of $1.5 is added.
Short trips under 5min during off-peak time are free,

except on weekends.

busTicketPrice (age: int,
ride_datetime: datetime,
ride_duration: int)} -> float:

S3D

Variable

Domains

age

<2, [2,17],
[18,65], >65

ride_datetime

weekdays peak
and off-peak,
weekends peak
and off-peak

ride_duration

<5, >=5

Carnegie
Mellon
Universi

Pairwise testing

Key Insight: some problems only occur as the result of
an interaction between parameters/components

Examples of interactions:
The bug occurs for senior citizens traveling on weekends
(pairwise interaction)
The bug occurs for senior citizens traveling on weekends during
peak hours (3-way interaction)

Claim: Considering pairwise interactions finds about

50% to 90% of defects

S3D o

Universi

Group Activity:

. Use specification testing to create a test suite for the
busTicketPrice example

- Explain the heuristics you use to create your test cases
- BONUS: Test the program and find some bugs!

Bus Ticket Pricing Rules

Base fare is $3

Children under 2 ride for free.

People under 18 and senior citizens over 65 pay half the fare.

On weekdays (Monday to Friday), between 7am and 9am and between 4pm and 6pm, a

peak surcharge of $1.5 is added to the fare.

e During weekends (Saturday and Sunday), there is a flat rate of $2 for all riders, except
for children under 2 who still ride for free.

e Short trips under 5 minutes during off-peak times are free, except on weekends.

bit.1ly/313-blackbox

S3D Vellons

Universi

When to create and run tests?

The V-Model

Requirements System validation plan System testing /

analysis testing in production

N\ Z

Architectural design === * s rerrerevceen Integration testing
: Unit test plan))
Low-level design fp-==r=ccee Unit testing

Implementation

 /

time

S3D Vellons

Universi

Test Driven Development

Tests fi,stt . oo —Repeal- — — 1

Test
succeeds

Popular agile technique
Write tests as specifications before code
Never write code without a failing test

Claims:

fails

Design approach toward testable design
Avoid writing unneeded code

Higher product quality (e.g. better code,
less defects)

Higher test suite quality i ess
Higher overall productivity

S3D Vellons

Universi

