T DON'T
NDERSTAND
WHY IT TAKES
50 LONG To
ADD A NEW

TeCHNICAL DEBT

Technical Debt

17-313 Fall 2025
Foundations of Software Engineering
https://cmu-173139.github.io
Eduardo Feo Flushing

Sources:
e Managing Technical Debt. Ipek Ozkaya. CMU SEI

S3D Vellons

Universi

https://cmu-17313q.github.io/

Administrivia

e P4 is out

Learning Goals

Understand the concept of technical debt

Reflect on personal experiences of technical debt
Explain the importance of technical debt management
Learn techniques for managing technical debt

S3D Vellons

Universi

T DON'T
UNDERSTAND
WHY IT TAKES
50 LONG To
ADD A NEW
WINDOW.

TeCHNICAL DEBT

Technical Debt

S3D Vellons

Universi

Technical debt

Any software system has
a certain amount of
essential complexity

Cruft causes changes
required to do its job...

to take more effort

a4 44
& &

... but most systems
contain cruft that makes it
harder to understand.

The technical debt metaphor treats the
cruft as a debt, whose interest payments
are the extra effort these changes require.

https://martinfowler.com/bliki/TechnicalDebt.htm/

Carnegie

Mellon
Universi

Internal quality makes it easier to add

features

If we compare one
system with o lot of
cruft...

LR 2 2 o S e o
Yr+t bt oh s

+
+
>
+
*
-
+
-
+

T rerth ettt H
S AR = S8 L S S
[angin 2 25 2 38 28 3
Lo T T T S
crt At pd 4
T o

*

...to an equivalent
one without

the cruft means new features
take longer to build

FEeeNee CL0ee el oLt eee
this extra time and effort is
the cost of the cruft, paid
with each new feature

free of cruft, features can be
added more quickly

Carnegie
Mellon

Universi

Technical Debt != Bad Internal Quality

“In software-intensive systems, technical debt consists of design or
implementation constructs that are expedient in the short term but
that set up a technical context that can make a future change more
costly or impossible. “

“Technical debt is a contingent liability whose impact is limited to
internal system qualities - primarily, but not only, maintainability
and evolvability.”

Managing Technical Debt: Reducing Friction in Software Development. Philippe Kruchten, Robert Nord, Ipek Ozkaya

S3D o

Universi

High internal quality is an investment

A high internal quality

cumulative
functionality

but delivers more rapidly
(and cheaply) later

software with high internal
quality gets a short initial
slow down '

low internal quality

|
|
|
| time

this point occurs in
weeks (not months)

S3D Vellogt

Universi

What actions cause technical debt?

Tightly-coupled components Lack of automated testing
Poorly-specified requirements Lack of knowledge
Business pressure Lack of ownership

Lack of process Delayed refactoring

Lack of documentation Multiple, long-lived

development branches

S3D Vellogt

Universi

Bitrot: Even if your software doesn't
change, it will break over time

Carnegie
Mellor®

Universi

EVERYONE
CREATES TECHNICAL
DEBT

Bad: Too much technical debt

* Bad code can be demoralizing

* Conversations with the client become awkward
* Team infighting

* Turnover and attrition

* Development speed

S3D

I'Mm OKAY WITH THe ||

eveNTsS THAT ARe |
UNFOLDING
CURRENTLY.

THAT'S OKAY,THINGS
ARe GOING TO Be

Carnegie
Mellor®

Universi

How to manage technical debt?

" i*Mapaging

nical Déebt

Managing Technical Debt: Reducing Friction in Software Development.
Philippe Kruchten, Robert Nord, Ipek Ozkaya

Principles of Technical Debt
Management

1. Technical debt is a useful rhetorical concept for dialogue.

2. If you do not incur any form of interest, then you probably
do not have actual technical debt.

3. All systems have technical debt.

4. Technical debt must trace to the system.

Carnegie

S3D Mellon_

Principles of Technical Debt
Management

5. Technical debt is not synonymous with bad quality.

6. Architecture technical debt has the highest cost of
ownership.

7. All code matters!

8. Technical debt has no absolute measure.

9. Technical debt depends on the future evolution of the
system.

S3D Vellons

Universi

When should we reduce technical
debt?

&

Technical Debt Net Liability

Technical Debt Net Asset

ecHN!

Occurrence Awareness Tipping Point Remediation
v v v v
>
T T2 T3 T4 Time
- J _ J\. o
Y A Y
BLISSFUL IGNORANCE) SUFFERING FROM DEBT DEBT-FREE
Y

GETTING VALUE OUT OF DEBT

Managing technical debt

Organizations needs to address the following challenges
continuously:

Recognizing technical debt

Making technical debt visible

Deciding when and how to resolve debt
Living with technical debt

> W b~

S3D Vellons

Universi

Not all technical debt is the same

Reckless Prudent
: “‘We don’t have time for E mu St Silp (DL S
Deliberate o deal with consequences
design !
(later)
Inadvertent “What'’s layering?” RAET7 BT eIy IO T4

should have done it”

https:/Imartinfowler.com/bliki/TechnicalDebtQuadrant.html

S3D Vellont -

Universi

Group Activity
Describe two plausible examples of technical debt in the midterm

scenario (MMate).

. Deliberate, prudent
.. Reckless, inadvertent

Discuss the reason for incurring debt (e.g., value added?) and the
debt payback strategy

Carnegie

S3D Mellon_

How can we avoid (inadvertent)
technical debt?

Common Anti-Patterns

* Not having a QA process! Or no-one follows it

S3D Viellont

Universi

Common Anti-Patterns

* Not having a QA process! Or no-one follows it é

* Bad version control practices

* Everyone commits to the main branch

COMMENT DATE.
CREATED MAIN LOOP & TIMING CONTROL.

* Long-lived feature branches BYELED CNFGFLE FRSNG
CODE ADDITIONS/EDITS
MORE. CODE

* Huge PRs HERE KALE CODE

ADKFJISLKDFISDKLET

MY HANDS ARE TYPING WORDS
HARARARAAANDS

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

Carnegie

SS D Mellm%

Universi

Common Anti-Patterns

* Not having a QA process! Or no-one follows it
* Bad version control practices
* Slow and encumbering QA processes

* changes take forever to get merged

* time could be better spent on new features

S3D Viellont

Universi

Common Anti-Patterns

* Not having a QA process! Or no-one follows it
* Bad version control practices -
* Slow and encumbering QA processes y v
* Reliance on repetitive manual labor

* focused on superficial problems rather than structuralones °=

FORGET THINGS IN SECONDS, AND
ARE ALL PRETTY SURE WE ARE
WAY ABOVE AVERAGE

* results may vary (e.g., manual testing)

* mistakes will happen!

Carnegie

Mellorw®
University

Case Study: Knight Capital

Knightmare: A DevOps
Cautionary Tale

I was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.

Since that conference I have been asked by several people to share the story through my blog.

This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

In layman's terms, Knight Capital Group realized a $460 million loss in 45-minutes.
Remember, Knight only has $365 million in cash and equivalents. In 45-minutes Knight

went from being the largest trader in US equities and a major market maker in the
NYSE and NASDAQ to bankrupt.

Carnegie

Mellor®
Universi

