

ML/Al for Software Engineers

17-313 Fall 2025

Foundations of Software Engineering

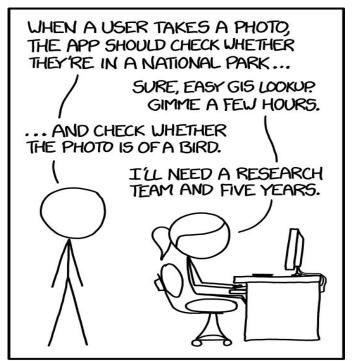
https://cmu-17313q.github.io

Eduardo Feo Flushing

Learning goals

- Understand how machine learning (ML) components are parts of larger systems
- Explain the typical machine learning process
- Key differences from traditional software
- Distinguish between LLMs and traditional ML models in terms of flexibility, scalability, and application.
- Evaluate and improve LLM performance by understanding benchmarks, interpreting metrics like perplexity, and adjusting settings

2014



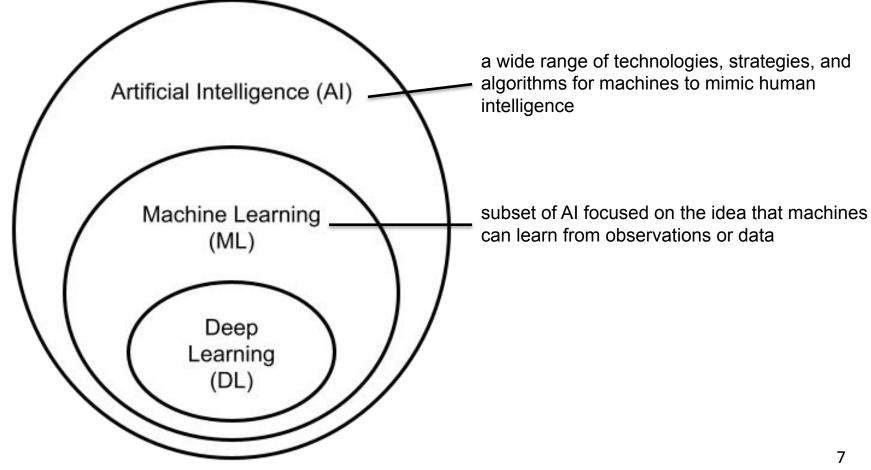
IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

... a few years later

Definition of Artificial Intelligence (AI)

"the science and engineering of making intelligent machines"

- John McCarthy



Outline

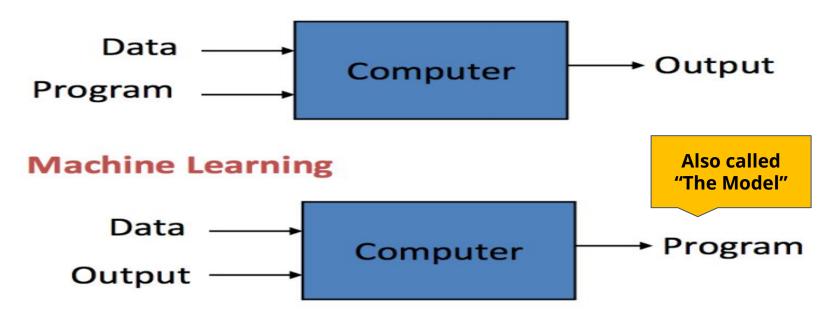
- Types of ML approaches
- ML Pipeline
 - Features
 - Model Building
 - Evaluation

•LLMs

- What's the difference between traditional ML and LLMs?
- Performance

Traditional Programming vs ML

Traditional Programming



Traditional Programming

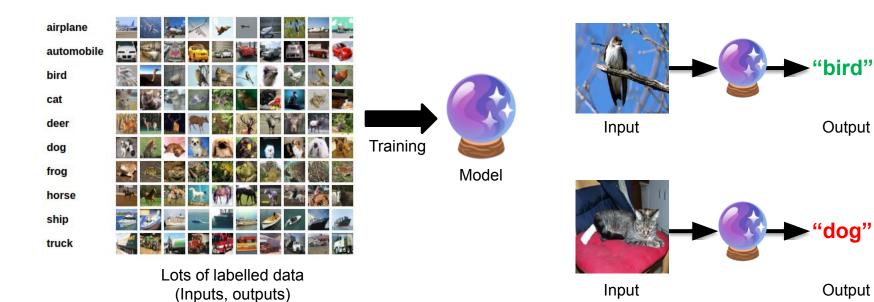
"It is easy. You just chip away the stone that doesn't look like David."

-(probably not) Michelangelo

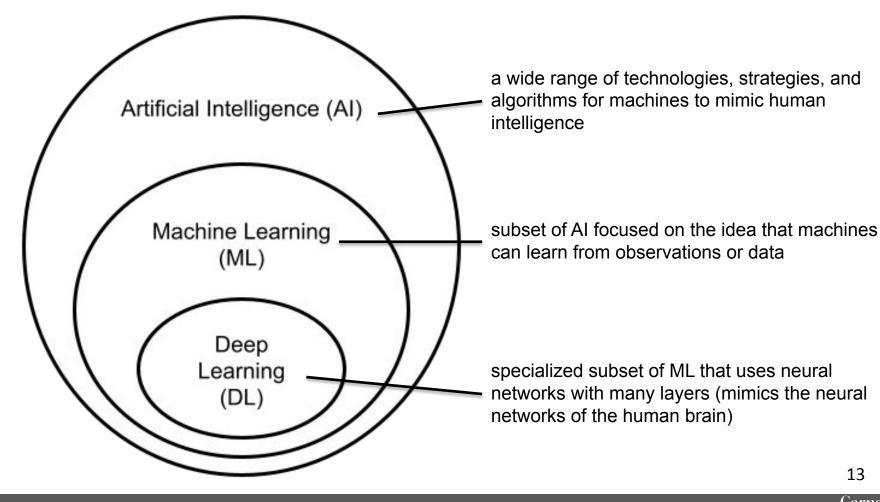
ML Development

- Observation
- Hypothesis
- Predict
- Test
- Reject or Refine Hypothesis

Machine Learning in One Slide (Supervised)

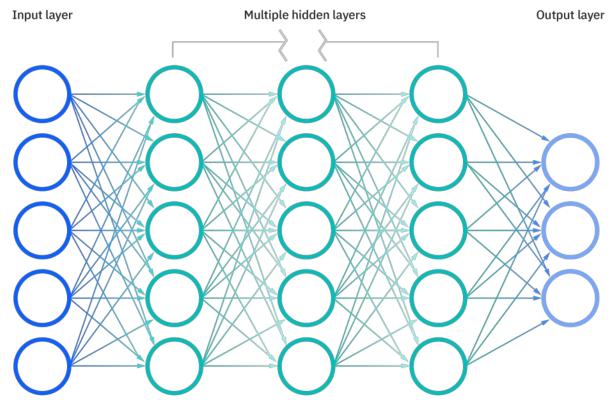


12

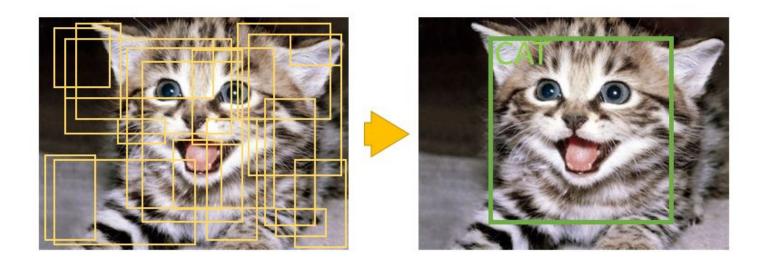


13

Deep neural network



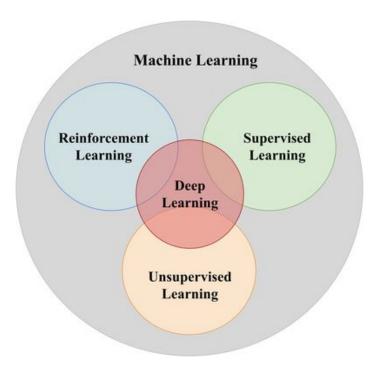
Tons of Features

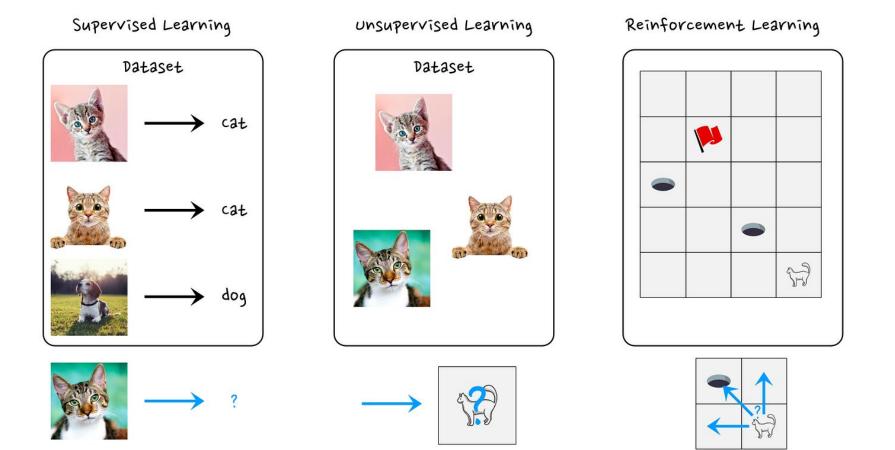


DL automates feature extraction -- handles raw data without needing human-designed features. 15

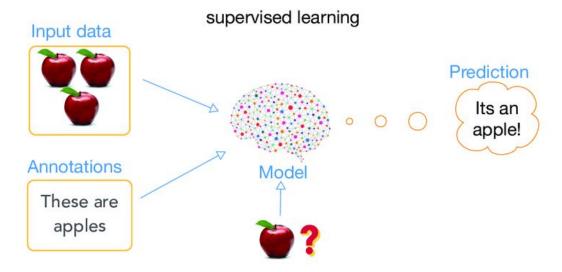
Different Categories of ML Algorithms

- Supervised
- Unsupervised
- Reinforcement Learning

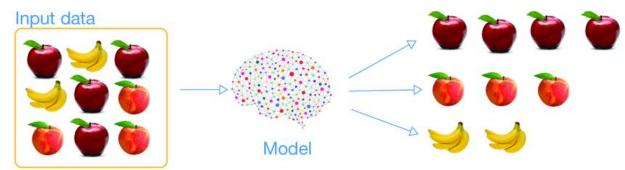




https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1



unsupervised learning



https://devopedia.org/supervised-vs-unsupervised-learning

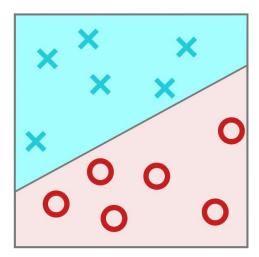
CLASSICAL MACHINE LEARNING



https://devopedia.org/supervised-vs-unsupervised-learning

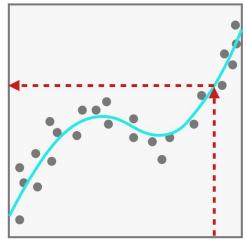
Supervised Learning

Classification Groups observations into "classes"



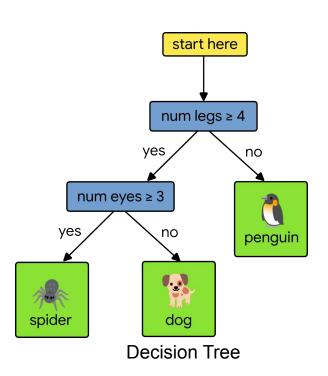
Here, the line classifies the observations into X's and O's

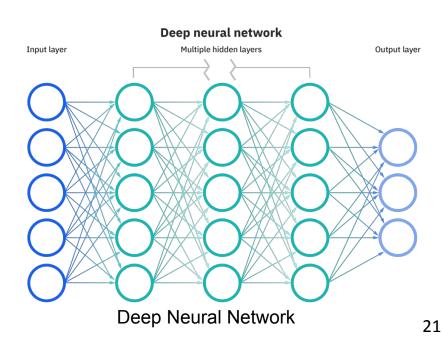
Regression predicts a numeric value



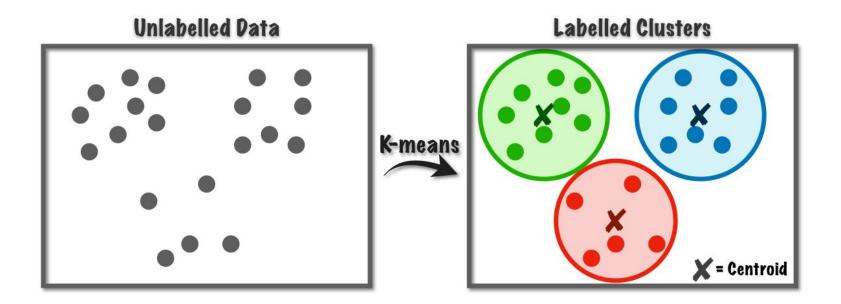
Here, the fitted line provides a predicted output, if we give it an input

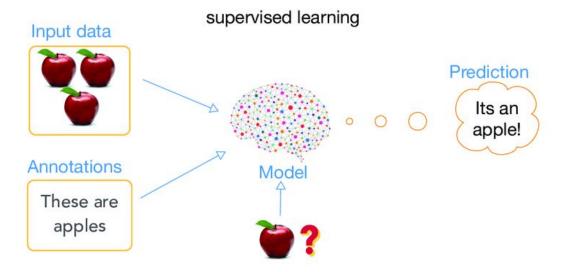
Supervised Learning: Different Complexities and Capabilities



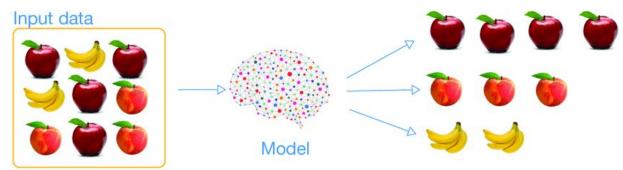


Unsupervised Learning





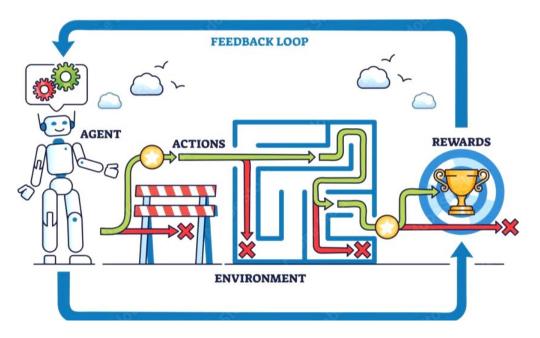
unsupervised learning



https://devopedia.org/supervised-vs-unsupervised-learning

23

Reinforcement learning

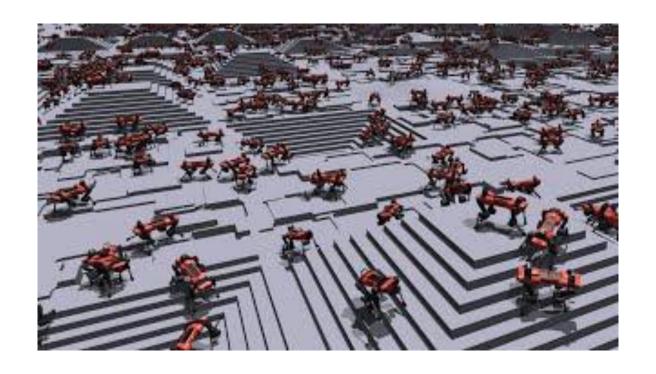


Agent: The decision-maker (the ML algorithm)

Environment: The problem space that the agent interacts with

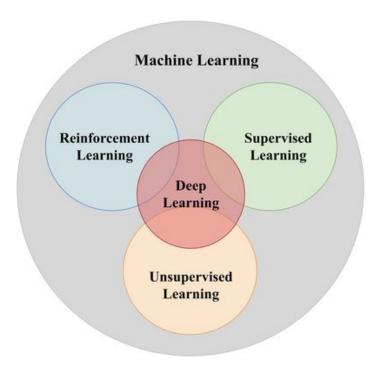
Action: A step the agent takes to navigate the environment

Reward: The feedback the agent receives after taking an action

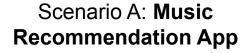


Different Categories of ML Algorithms

- Supervised
- Unsupervised
- Reinforcement Learning



Three Scenarios:

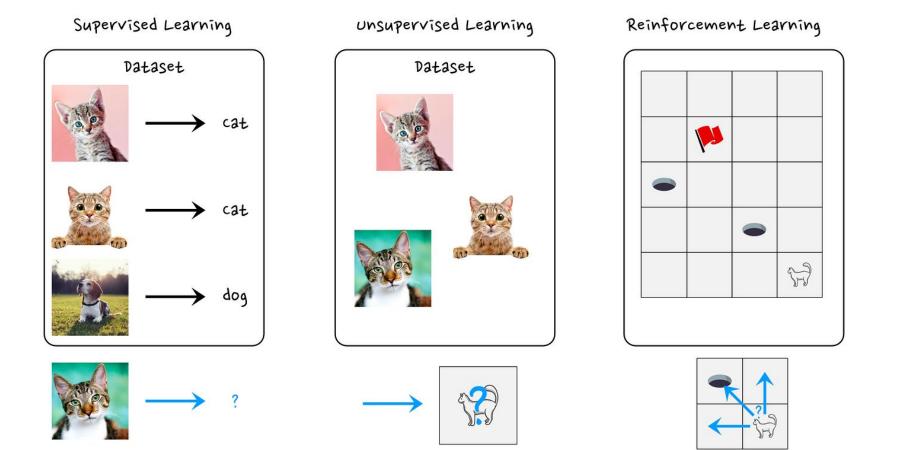


Scenario B: Analyzing Sales Data

Scenario C: Adaptive Game Difficulty

In a team of 3-4 students, for one assigned scenario:

- Discuss which learning strategies (supervised, unsupervised, or reinforcement) might be suitable for their scenario
- Determine why one might be more appropriate than the others.
- Consider the **nature of the data**, the **problem objectives**, and any aspects of adaptability or exploration required.



https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1

Scenario A: **Music Recommendation App**

Supervised Learning: train model on historical data; use labeled data of past user preferences to predict new songs they might like.

Unsupervised Learning: use clustering techniques to group similar music or users to offer recommendations within those clusters.

Reinforcement Learning: adapt to user feedback (likes/dislikes) over time to improve recommendations, learning optimal strategies through reward signals.

Scenario B: Analyzing
Sales Data

Supervised Learning: use historical sales data to train predictive models for forecasting future sales based on labeled outcomes (e.g., sales figures).

Unsupervised Learning: cluster analysis can identify groupings or patterns in products frequently purchased together without prior labels.

Reinforcement Learning: not a typical choice

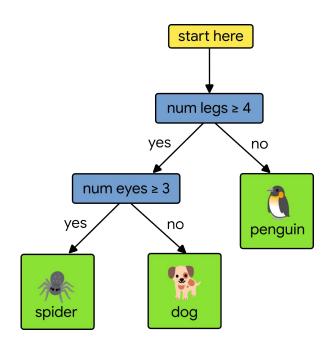
Scenario C: Adaptive Game Difficulty

Supervised Learning: use labeled outcomes of previous game sessions for modeling difficulty adjustments based on historical performance data

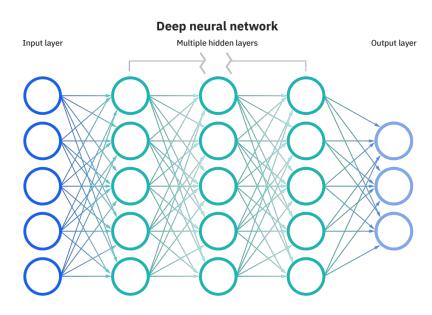
Unsupervised Learning: not typically the primary approach.

Reinforcement Learning: adapt difficulty levels dynamically based on player performance feedback using reward signals (e.g., player scores or game duration)

Tradeoffs



Decision Tree



Deep Neural Network

35

Tradeoffs

- Accuracy
- Capabilities (e.g. classification, recommendation, clustering...)
- Amount of training data needed
- Inference latency
- Learning latency
- Model size
- Explainable

Black-box view of ML

ML Algorithmic Trade-Off

Which ones are more important?

Accuracy, latency, model size, explainability

Scenario A: **Music Recommendation App**

Scenario B: Analyzing
Sales Data

Scenario C: Adaptive Game Difficulty

39

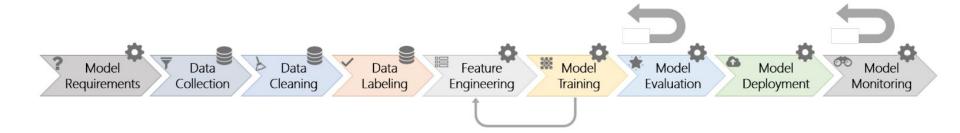
Outline

- Types of ML approaches
- ML Pipeline
 - Features
 - Model Building
 - Evaluation

•LLMs

- What's the difference between traditional ML and LLMs?
- Performance

ML Development Process (ML Pipeline)



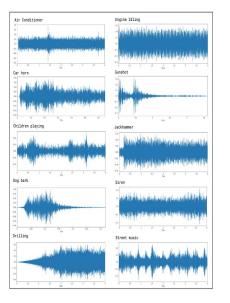
41 al. ICSE 2019

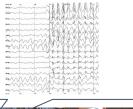
Source: "Software Engineering for Machine Learning: A Case Study" by Amershi et al. ICSE 2019

Typical ML Pipeline

- Static
 - **Get** labeled data (data collection, cleaning and, labeling)
 - Identify and extract features (feature engineering)
 - Split data into training and evaluation set
 - Learn model from training data (model training)
 - Evaluate model on evaluation data (model evaluation)
 - Repeat, revising features
- In production
 - Evaluate model on production data; monitor (model monitoring)
 - Select production data for retraining (model training + evaluation)
 - Update model regularly (model deployment)

Example Data





64 Parame	c Mithed Princips		Steel 98	obe selected			Never makeds for budges	
9	j	7 00 -	9	9	9	J	g	Store Breated Image Draw Rows Draw Rows Draw Rows Draw Rows Projet Margo Senetroly N S And Margo Senetroly N S And Margo Stare Store N S
h S	h	1	i i	ľ	í	ĭ	i .	For Hope Fee So: 100 & Sienzed Shot Color. 0 0 More Selected Blobs Interval. 2 3 3
j k) k	5	, x C	j K	7	j Ł	5' K	Coor. Specifica (K.V.) (E. S. S.
	l M	l M	M	M	M.	N W	I I	Equal Bala

PickupLocation	TargetLoc ation	OrderTime	PickupTime
	***	18:23	18:31
		ation	ation

age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	disease
63	M	3	145	233	1	0	150	0	2.3	0	0	1	Y
37	M	2	130	250	0	1	187	0	3.5	0	0	2	Υ
41	F	1	130	204	0	0	172	0	1.4	2	0	2	Y
56	M	1	120	236	0	1	178	0	0.8	2	0	2	N
57	F	0	120	354	0	1	163	1	0.6	2	0	2	Y
57	M	0	140	192	0	1	148	0	0.4	1	0	1	Y
56	F	1	140	294	0	0	153	0	1.3	1	0	2	N
44	M	1	120	263	0	1	173	0	0	2	0	3	N
52	M	2	172	199	1	1	162	0	0.5	2	0	3	N
57	M	2	150	168	0	1	174	0	1.6	2	0	2	Y
54	M	0	140	239	0	1	160	0	1.2	2	0	2	N
48	F	2	130	275	0	1	139	0	0.2	2	0	2	Υ
49	M	1	130	266	0	1	171	0	0.6	2	0	2	Υ

Feature Engineering (non DL)

- Convert raw data into a functional form
 - Transform raw data into a more compact representation that captures the most important information in the data.
- Improve the performance of models by focusing on the most relevant information in the data
 - Remove misleading things

ML Evaluation (Static)

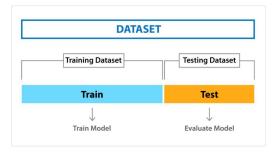
- Prediction accuracy on learned data vs unseen data
 - Separate learning set, not used for training
- For binary predictors: false positives vs. false negatives, precision vs. recall
- For numeric predictors: average (relative) distance between real and predicted value
- For ranking predictors: top-K, etc.

Evaluation

- Prediction accuracy on learned data vs. unseen data
- Why?

Evaluation

- Prediction accuracy on learned data vs. unseen data
 - Separate learning set, not used for training



Evaluation

- Binary classification: Positive / Negative
- Possible classification outcomes:

TN:	True	Negatives
	TN:	TN: True

TP: True Positives

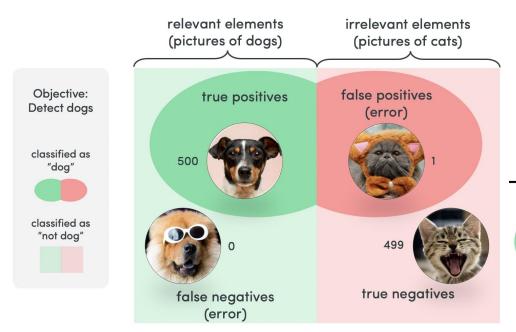
FN: False Negatives

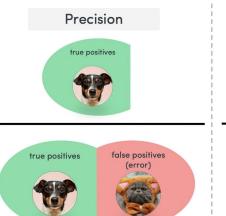
• FP: False Positives

Actual	Predi	cted			
Class	Class				
	Negative	Positive			
Negative	TN	FP			
Positive	FN	TP			

Accuracy is calculated as the total number of two correct predictions (TP + TN) divided by the total number of a dataset (TP + TN + FP + FN).

ML Evaluation (Static)





https://levity.ai/blog/precision-vs-recall

Evaluation: is model accuracy enough?

Q. Are false positives and false negatives equally bad?

Activity: False positives and false negatives, equally bad?

Discuss in groups these scenarios:

- Recognizing cancer
- Suggesting products to buy on e-commerce site
- Identifying human trafficking at the border
- Predicting high demand for ride sharing services
- Predicting recidivism chance
- Approving loan applications

ML Evaluation (In Production)

- Beyond static data sets, build telemetry
- Identify mistakes in practice
- Use sample of live data for evaluation
- Retrain models with sampled live data regularly
- Monitor accuracy and intervene

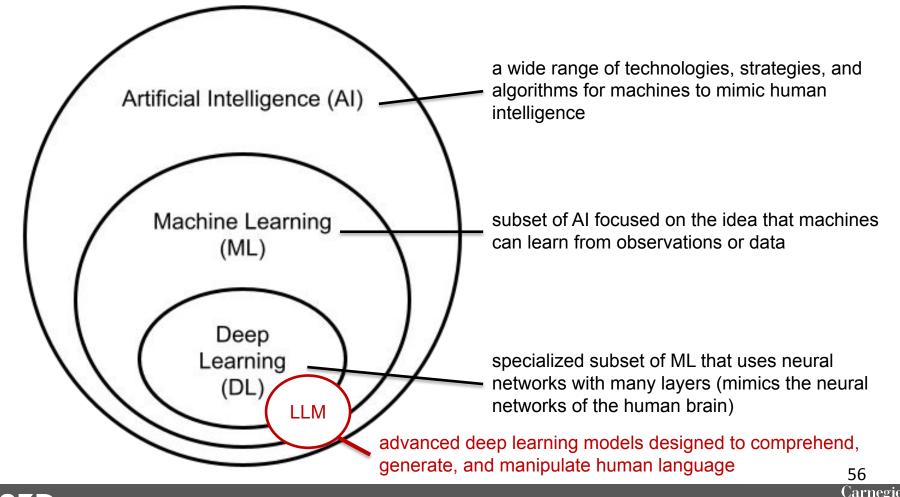
Outline

- Traditional Programing vs. ML
- Case Studies
- ML Pipeline
 - Features
 - Model Building
 - Evaluation

•LLMs

- What's the difference between traditional ML and LLMs?
- Performance

Large Language Models (LLMs)

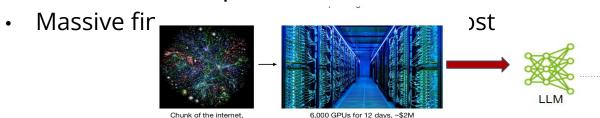


Carnegie Mellon University

- Language Modeling: Learning to predict the probability of word sequences.
 - Input: Text sequence
 - Output: Most likely next word

```
P(Eduardo, loves, his, cat) = 0.02
P(Eduardo, cat, loves, his) = 0.0001
P(Eduardo, hates, his, cat) = 0.00001
Semantic knowledge
```


- Language Modeling: Learning to predict the probability of word sequences.
- LLMs are... large
 - GPT-3 has 175B parameters
 - GPT-4 is estimated to have ~1.24 Trillion
- Pre-trained with up to a PB of Internet text data



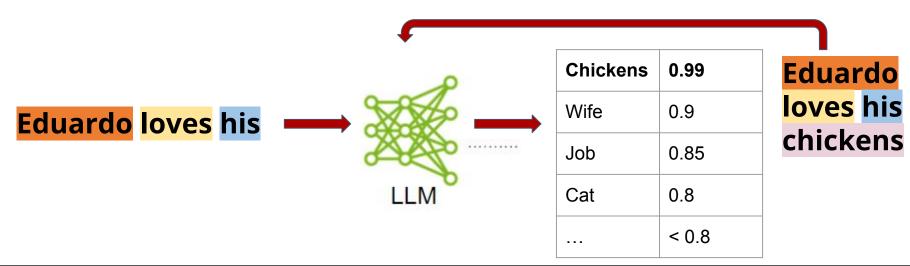
~1e24 FLOPS

- Language Modeling: Learning to predict the probability of word sequences.
 - Probability distribution of a sequence of words

```
P(Eduardo, loves, his, cat) = P(cat|Eduardo, loves, his) P(Eduardo, loves, his) = P(cat|Eduardo, loves, his) P(his|Eduardo, loves) P(Eduardo, loves) P(Eduardo) P(Eduardo) P(Eduardo)
```

Generative Models

Autoregressive Generative Models



Language Models are Pre-trained

- Only a few people have resources to train LLMs
- Access through API calls
 - OpenAI, Google Vertex AI, Anthropic, Hugging Face

We will treat it as a black box that can make errors!

LLMs are far from perfect

- Hallucinations
 - Factually Incorrect Output
- High Latency
 - Output words generated one at a time
 - Larger models also tend to be slower
- Output format
 - Hard to structure output (e.g. extracting date from text)
 - Some workarounds for this (later)

```
print the result of the following Python code:

def f(x):
    if x == 1:
        return 1
    return x * (x - 1) * f(x-2)

f(2)

ASSISTANT The result of the code is 2.
```

Traditional ML vs LLMs

Focus and Versatility

- Traditional ML Models:
 - Broadly adaptable (e.g., image classification, fraud detection)
 - Flexible but needs task-specific feature engineering
- LLMs:
 - Specialized for language tasks
 - Ideal for chatbots, text summarization, translation

Traditional ML vs LLMs

Scale and Complexity

- Traditional ML Models:
 - Range from simple to complex; millions of parameters max
 - Optimization and fine-tuning are often simpler, with a focus on hyperparameters.
- LLMs:
 - Billions of parameters; high computational demands
 - Extensive training time on vast datasets; may take days or weeks to complete.

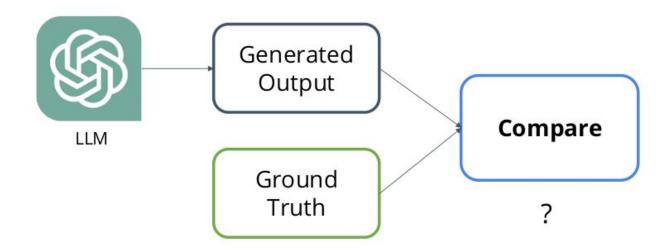
Traditional ML vs LLMs

Performance and Generalization

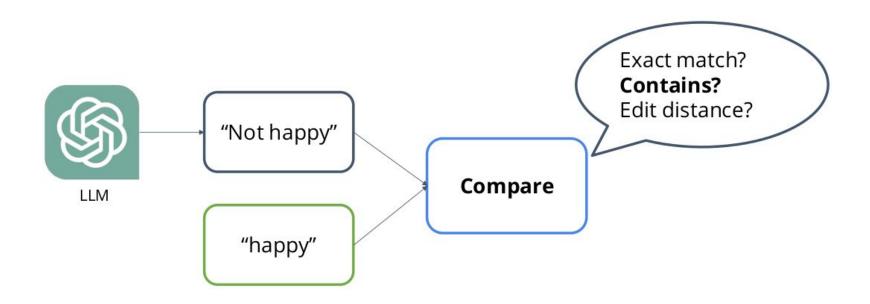
- Traditional ML Models:
 - Performance depends on feature engineering and task-specific data
- LLMs:
 - Strong generalization; adaptable to new tasks with minimal fine-tuning

Evaluation: is the LLM good at our task?

First, do we have a labeled dataset?



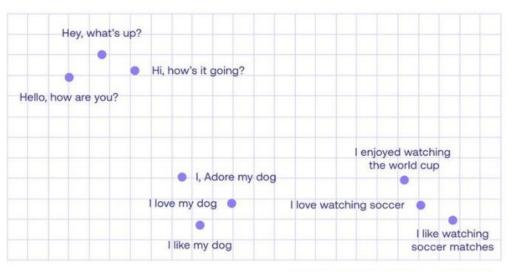
Textual Comparison: Syntactic Checks



Textual Comparison: Embeddings

Embeddings are a representation of text aiming to capture

semantic meaning.



https://txt.cohere.com/sentence-word-embeddings/

LLM Evaluation

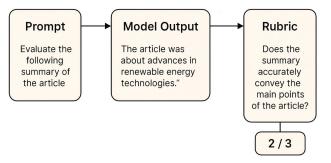
Suppose we don't have an evaluation dataset. What do we care about in our output?

Example: Creative Writing

- Lexical Diversity (unique word counts)
- Semantic diversity (pairwise similarity)
- Bias

LLM-as-a-Judge

- Uses an LLM to evaluate other model outputs
- Works best when guided by a rubric
- Enables faster iteration and large-scale evaluation
- Risks: bias, inconsistency, requires human calibration



Prompt Engineering

- Rewording text prompts to achieve desired output.
- Low-hanging fruit to improve LLM performance.
- Popular prompt styles
 - Zero-shot: instruction + no examples
 - Few-shot: instruction + examples of desired input-output pairs
- Don't be too afraid of prompt length: 1000+ words is OK

Chain of Thought Prompting

- Few-shot prompting strategy
- Example responses include reasoning
- Useful for solving more complex word problems [arXiv]
- Example:
 - Q: A person is traveling at 20 km/hr and reached his destiny in 2.5 hr then find the distance? Answer Choices: (a) 53 km (b) 55 km (c) 52 km (d) 60 km (e) 50km
 - A: The distance that the person traveled would have been 20 km/hr * 2.5 hrs = 50 km. The answer is (e).

Fine-Tuning

- Retrain part of the LLM with your own data
- Create dataset specific to your task
 - Provide input-output examples (>= 100)
 - Quality over quantity!
- Generally not necessary: try prompt engineering first.

Fine-Tuning Output via LLM Model Settings:

Temperature

- Controls randomness in output
- Higher values (e.g., 1.0) make responses more diverse, while lower values (e.g., 0.2) make responses more focused and deterministic.

Top-k Sampling

• Limits output choices to the top k highest-probability words, reducing unlikely words. Lower k (e.g., 10) makes responses more predictable.

Top-p (Nucleus) Sampling

• Restricts choices to a dynamic set of words with a cumulative probability threshold (e.g., 0.9). This setting balances creativity and coherence.

Fine-Tuning Output via LLM Model Settings:

Max Tokens

• Sets the maximum length of the output, useful for limiting responses to a specific length.

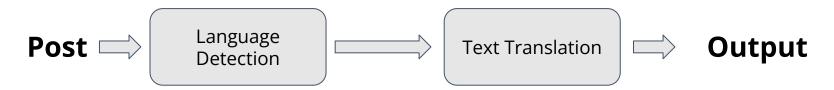
Frequency and Presence Penalties

- Frequency Penalty: Discourages word repetition by reducing the likelihood of words already used.
- Presence Penalty: Encourages or discourages certain words based on how frequently they appear.

Tailoring settings allows for better control over response style, making outputs more suitable for creative tasks, factual responses, or concise summaries

Agentic Al

- What's an Al Agent?
 - "AI-Powered software that accomplishes a goal"
 - Dharmesh Shah
- Agentic Al systems use multi-step workflows that combine one or more LLM calls, tool use, and human input to accomplish tasks autonomously.



Agentic AI: Example Workflows

- Reflection
 - Agents critique & improve their own output
- Tool Use
 - Agents call APIs, retrieve information from databases, or write code
- Planning
 - Agents autonomously break complex goals into sub-tasks & execute adaptively
- Multi-Agent Collaboration
 - Specialized agents coordinate

Next class ...

Why ML/Al projects fail?

What's wrong with the model-centric pipeline?

Are there any new challenges?

What is ML Ops?

